Suppr超能文献

监督非负矩阵分解以预测重症监护病房死亡风险。

Supervised Nonnegative Matrix Factorization to Predict ICU Mortality Risk.

作者信息

Chao Guoqing, Mao Chengsheng, Wang Fei, Zhao Yuan, Luo Yuan

机构信息

Feinberg School of Medicine, Northwestern University, Chicago, U.S.

Weill Cornell Medicine, Cornell University, New York, U.S.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:1189-1194. doi: 10.1109/BIBM.2018.8621403. Epub 2019 Jan 24.

Abstract

ICU mortality risk prediction is a tough yet important task. On one hand, due to the complex temporal data collected, it is difficult to identify the effective features and interpret them easily; on the other hand, good prediction can help clinicians take timely actions to prevent the mortality. These correspond to the interpretability and accuracy problems. Most existing methods lack of the interpretability, but recently Subgraph Augmented Nonnegative Matrix Factorization (SANMF) has been successfully applied to time series data to provide a path to interpret the features well. Therefore, we adopted this approach as the backbone to analyze the patient data. One limitation of the original SANMF method is its poor prediction ability due to its unsupervised nature. To deal with this problem, we proposed a supervised SANMF algorithm by integrating the logistic regression loss function into the NMF framework and solved it with an alternating optimization procedure. We used the simulation data to verify the effectiveness of this method, and then we applied it to ICU mortality risk prediction and demonstrated its superiority over other conventional supervised NMF methods.

摘要

重症监护病房(ICU)死亡率风险预测是一项艰巨但重要的任务。一方面,由于收集到的时间数据复杂,难以识别有效的特征并轻松解释它们;另一方面,良好的预测可以帮助临床医生及时采取行动预防死亡。这些分别对应可解释性和准确性问题。大多数现有方法缺乏可解释性,但最近子图增强非负矩阵分解(SANMF)已成功应用于时间序列数据,为很好地解释特征提供了一条途径。因此,我们采用这种方法作为主干来分析患者数据。原始SANMF方法的一个局限性是由于其无监督性质导致预测能力较差。为了解决这个问题,我们通过将逻辑回归损失函数集成到非负矩阵分解(NMF)框架中,提出了一种有监督的SANMF算法,并通过交替优化过程对其进行求解。我们使用模拟数据验证了该方法的有效性,然后将其应用于ICU死亡率风险预测,并证明了它相对于其他传统有监督NMF方法的优越性。

相似文献

1
Supervised Nonnegative Matrix Factorization to Predict ICU Mortality Risk.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:1189-1194. doi: 10.1109/BIBM.2018.8621403. Epub 2019 Jan 24.
3
Constrained Nonnegative Matrix Factorization for Image Representation.
IEEE Trans Pattern Anal Mach Intell. 2012 Jul;34(7):1299-311. doi: 10.1109/TPAMI.2011.217. Epub 2011 Nov 8.
4
Data representation using robust nonnegative matrix factorization for edge computing.
Math Biosci Eng. 2022 Jan;19(2):2147-2178. doi: 10.3934/mbe.2022100. Epub 2021 Dec 28.
5
Semi-Supervised Nonnegative Matrix Factorization via Constraint Propagation.
IEEE Trans Cybern. 2016 Jan;46(1):233-44. doi: 10.1109/TCYB.2015.2399533. Epub 2015 Feb 19.
6
Max-min distance nonnegative matrix factorization.
Neural Netw. 2015 Jan;61:75-84. doi: 10.1016/j.neunet.2014.10.006. Epub 2014 Oct 26.
7
Adaptive Method for Nonsmooth Nonnegative Matrix Factorization.
IEEE Trans Neural Netw Learn Syst. 2017 Apr;28(4):948-960. doi: 10.1109/TNNLS.2016.2517096. Epub 2016 Jan 28.
8
Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization.
IEEE Trans Neural Netw. 2010 Dec;21(12):1869-81. doi: 10.1109/TNN.2010.2076831. Epub 2010 Oct 4.
9
Discriminant nonnegative tensor factorization algorithms.
IEEE Trans Neural Netw. 2009 Feb;20(2):217-35. doi: 10.1109/TNN.2008.2005293. Epub 2009 Jan 13.
10
Efficient Nonnegative Matrix Factorization by DC Programming and DCA.
Neural Comput. 2016 Jun;28(6):1163-216. doi: 10.1162/NECO_a_00836. Epub 2016 May 3.

引用本文的文献

1
NMFProfiler: a multi-omics integration method for samples stratified in groups.
Bioinformatics. 2025 Feb 4;41(2). doi: 10.1093/bioinformatics/btaf066.
3
Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis.
Genomics Proteomics Bioinformatics. 2022 Oct;20(5):850-866. doi: 10.1016/j.gpb.2022.11.003. Epub 2022 Dec 1.
4
AX-Unet: A Deep Learning Framework for Image Segmentation to Assist Pancreatic Tumor Diagnosis.
Front Oncol. 2022 Jun 2;12:894970. doi: 10.3389/fonc.2022.894970. eCollection 2022.
5
A Novel Application of Non-Negative Matrix Factorization to the Prediction of the Health Status of Undocumented Immigrants.
Health Equity. 2021 Dec 13;5(1):834-839. doi: 10.1089/heq.2021.0079. eCollection 2021.
7
Phenotyping Multiple Organ Dysfunction Syndrome Using Temporal Trends in Critically Ill Children.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2019 Nov;2019:968-972. doi: 10.1109/bibm47256.2019.8983126. Epub 2020 Feb 6.

本文引用的文献

1
Predicting ICU readmission using grouped physiological and medication trends.
Artif Intell Med. 2019 Apr;95:27-37. doi: 10.1016/j.artmed.2018.08.004. Epub 2018 Sep 10.
2
3
Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction.
J Cardiovasc Transl Res. 2017 Jun;10(3):305-312. doi: 10.1007/s12265-016-9727-8. Epub 2017 Jan 23.
4
Feature Selection for Optimized High-Dimensional Biomedical Data Using an Improved Shuffled Frog Leaping Algorithm.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Nov-Dec;15(6):1765-1773. doi: 10.1109/TCBB.2016.2602263. Epub 2016 Aug 24.
5
Using Machine Learning to Predict Laboratory Test Results.
Am J Clin Pathol. 2016 Jun;145(6):778-88. doi: 10.1093/ajcp/aqw064. Epub 2016 Jun 21.
6
Tensor factorization toward precision medicine.
Brief Bioinform. 2017 May 1;18(3):511-514. doi: 10.1093/bib/bbw026.
7
SNMFCA: supervised NMF-based image classification and annotation.
IEEE Trans Image Process. 2012 Nov;21(11):4508-21. doi: 10.1109/TIP.2012.2206040. Epub 2012 Jun 26.
8
Graph Regularized Nonnegative Matrix Factorization for Data Representation.
IEEE Trans Pattern Anal Mach Intell. 2011 Aug;33(8):1548-60. doi: 10.1109/TPAMI.2010.231. Epub 2010 Dec 23.
9
Convex and semi-nonnegative matrix factorizations.
IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):45-55. doi: 10.1109/TPAMI.2008.277.
10
Projected gradient methods for nonnegative matrix factorization.
Neural Comput. 2007 Oct;19(10):2756-79. doi: 10.1162/neco.2007.19.10.2756.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验