Stroup Emily Kunce, Luo Yuan, Sanchez-Pinto L Nelson
Driskill Graduate Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, U.S.A.
Dept. of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, U.S.A.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2019 Nov;2019:968-972. doi: 10.1109/bibm47256.2019.8983126. Epub 2020 Feb 6.
Multiple organ dysfunction syndrome (MODS) is one of the most common causes of death in critically ill children. However, despite decades of clinical trials, there are no comprehensive approaches to the management of MODS or effective targeted therapies that have consistently improved outcomes. Better understanding the heterogeneity of MODS and characterizing subgroups of MODS patients could improve our understanding of the syndrome and help us develop new management strategies. We analyzed a cohort of 5,297 children with MODS from two children's hospitals and used subgraph-augmented non-negative matrix factorization (SANMF) to identify unique temporal patterns in organ dysfunction across four novel subgroups. We demonstrate that these subgroups are composed of patients with distinct clinical characteristics and are independently predictive of clinical outcomes. Our work suggests that these subgroups represent four relevant phenotypes of pediatric MODS that could be used to identify novel management strategies.
多器官功能障碍综合征(MODS)是危重症儿童最常见的死亡原因之一。然而,尽管进行了数十年的临床试验,但对于MODS的管理尚无全面的方法,也没有始终能改善预后的有效靶向治疗方法。更好地理解MODS的异质性并对MODS患者亚组进行特征描述,可能会增进我们对该综合征的理解,并帮助我们制定新的管理策略。我们分析了来自两家儿童医院的5297例患有MODS的儿童队列,并使用子图增强非负矩阵分解(SANMF)来识别四个新亚组中器官功能障碍的独特时间模式。我们证明,这些亚组由具有不同临床特征的患者组成,并且独立预测临床结果。我们的工作表明,这些亚组代表了小儿MODS的四种相关表型,可用于识别新的管理策略。