Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, Ottawa, K1S 5B6, Canada.
Metrology Research Centre, National Research Council Canada, Ottawa, K1A OR6, Canada.
Med Phys. 2019 Nov;46(11):5173-5184. doi: 10.1002/mp.13744. Epub 2019 Sep 20.
To study the relationships between dose (D), kerma (K), and collision kerma ( ) in photon beams and to investigate total radiative yields for electrons and positrons as a function of energy. To do this accurately required calculating collision kerma directly as a function of position in a phantom and making changes to the EGSnrc package (including DOSRZnrc and g applications).
Changes were made to the EGSnrc system to allow the user to distinguish events according to their initiating process, most importantly relaxation particles initiated by electron impact ionization as opposed to initiated by photons, especially those events depositing energy below energy cutoffs after relaxation events. Appropriate changes were made to the applications DOSRZnrc and g and a new application, DOSRZnrcKcol, was written.
The modified codes are much more robust against changes in simulation parameters such as ECUT and AE and whether or not electron impact ionization is included in the simulation. The radiative yields for electrons generally differ from values in ICRU Report 37 (1984) which only account for radiative losses due to bremsstrahlung. The Monte Carlo calculated g(brems) values are generally greater than the ICRU 37 values due to energy-loss straggling. Plots of D, K and vs depth in megavoltage photon beams show that some "conventional wisdom" does not hold in general (e.g., D is not always greater than K past ) and in general at 10 cm depth it is found that D≈K and . The beam radius at which reaches its saturation value depends strongly on the threshold used to define reaching saturation and is generally greater than the radius for lateral charged particle equilibrium used in the TRS-483 Code of Practice for small beam dosimetry (Palmans et al, Med Phys. 2018;45:e1123-e1145).
The changes to EGSnrc make kerma calculations more accurate but previous calculations with electron impact ionization turned off gave close to correct results. The application DOSRZnrcKcol makes calculating collision kerma more efficient and avoids various approximations used in the past although those approximations are shown to be justified. Including energy-loss straggling when calculating bremsstrahlung radiation yield increases the value. Fluorescence losses and annihilation in flight further increase the radiation yield of electrons and positrons. Results demonstrate the effects of EGSnrc using electron bremsstrahlung production cross sections for positrons and failing to model positron impact ionization.
研究光子束中剂量(D)、比释动能(K)和碰撞比释动能( )之间的关系,并研究电子和正电子的总辐射产额随能量的变化。为了准确地做到这一点,需要在体模中直接计算作为位置函数的碰撞比释动能,并对 EGSnrc 包(包括 DOSRZnrc 和 g 应用程序)进行更改。
对 EGSnrc 系统进行了更改,以便用户可以根据其启动过程区分事件,最重要的是,由电子碰撞电离启动的弛豫粒子与由光子启动的粒子区分开,特别是那些在弛豫事件后能量沉积低于能量截止值的事件。对应用程序 DOSRZnrc 和 g 进行了适当的更改,并编写了一个新的应用程序 DOSRZnrcKcol。
修改后的代码在模拟参数(如 ECUT 和 AE)以及是否包括电子碰撞电离方面具有更强的鲁棒性。电子的辐射产额通常与 ICRU 报告 37(1984 年)中的值不同,后者仅考虑了轫致辐射引起的辐射损失。由于能量损失离散,蒙特卡罗计算的 g(韧致辐射)值通常大于 ICRU 37 值。兆伏光子束中 D、K 和 随深度的变化表明,一些“传统观念”并不普遍适用(例如,在 之后,D 并不总是大于 K),一般在 10 cm 深度处,发现 D≈K 和 。达到饱和值的 束半径强烈依赖于用于定义达到饱和的阈值,并且通常大于用于小束剂量学实践的 TRS-483 代码的横向带电粒子平衡的束半径(Palmans 等人,医学物理学。2018;45:e1123-e1145)。
对 EGSnrc 的更改使比释动能计算更加准确,但之前关闭电子碰撞电离的计算结果接近正确。DOSRZnrcKcol 应用程序使碰撞比释动能的计算更有效,并避免了过去使用的各种近似值,尽管这些近似值被证明是合理的。在计算韧致辐射产额时包括能量损失离散会增加产额。荧光损失和飞行中湮没进一步增加了电子和正电子的辐射产额。结果表明,使用正电子韧致辐射产生截面而不模拟正电子碰撞电离对 EGSnrc 的影响。