Suppr超能文献

从电荷密度分析看正磷酸钴(Co(PO )的催化活性的新见解。

New Insights into the Catalytic Activity of Cobalt Orthophosphate Co (PO ) from Charge Density Analysis.

机构信息

Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37977, Göttingen, Germany.

Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstrasse 6, 37077, Göttingen, Germany.

出版信息

Chemistry. 2019 Dec 10;25(69):15786-15794. doi: 10.1002/chem.201902303. Epub 2019 Nov 8.

Abstract

An extensive characterization of Co (PO ) was performed by topological analysis according to Bader's Quantum Theory of Atoms in Molecules from the experimentally and theoretically determined electron density. This study sheds light on the reactivity of cobalt orthophosphate as a solid-state heterogeneous oxidative-dehydration and -dehydrogenation catalyst. Various faces of the bulk catalyst were identified as possible reactive sites given their topological properties. The charge accumulations and depletions around the two independent five- and sixfold-coordinated cobalt atoms, found in the topological analysis, are correlated to the orientation and population of the d-orbitals. It is shown that the (011) face has the best structural features for catalysis. Fivefold-coordinated ions in close proximity to advantageously oriented vacant coordination sites and electron depletions suit the oxygen lone pairs of the reactant, mainly for chemisorption. This is confirmed both from the multipole refinement as well as from density functional theory calculations. Nearby basic phosphate ions are readily available for C-H activation.

摘要

采用基于实验和理论测定电子密度的 Bader 分子中的原子量子理论对 Co(PO4)进行了广泛的拓扑分析。这项研究揭示了正磷酸钴作为固态多相氧化-脱水和脱氢催化剂的反应性。根据拓扑性质,确定了大块催化剂的各个面作为可能的反应活性位。在拓扑分析中发现的两个独立的五配位和六配位钴原子周围的电荷积累和耗尽与 d 轨道的取向和分布有关。结果表明,(011)面具有最佳的催化结构特征。与有利取向的空配位位点和电子耗尽接近的五配位离子适合反应物的氧孤对,主要用于化学吸附。这不仅从多极精修,而且从密度泛函理论计算中得到了证实。附近的碱性磷酸根离子易于发生 C-H 活化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aad4/6916324/d1b9d25b3387/CHEM-25-15786-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验