Cossard Alessandro, Desmarais Jacques K, Casassa Silvia, Gatti Carlo, Erba Alessandro
Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy.
CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", via C. Golgi 19, 20133 Milano, Italy.
J Phys Chem Lett. 2021 Feb 25;12(7):1862-1868. doi: 10.1021/acs.jpclett.1c00100. Epub 2021 Feb 12.
The nature of chemical bonding in actinide compounds (molecular complexes and materials) remains elusive in many respects. A thorough analysis of their electron charge distribution can prove decisive in elucidating bonding trends and oxidation states along the series. However, the accurate determination and robust analysis of the charge density of actinide compounds pose several challenges from both experimental and theoretical perspectives. Significant advances have recently been made on the experimental reconstruction and topological analysis of the charge density of actinide materials [Gianopoulos . , 2019, 6, 895]. Here, we discuss complementary advances on the theoretical side, which allow for the accurate determination of the charge density of actinide materials from quantum-mechanical simulations in the bulk. In particular, the extension of the Topond software implementing Bader's quantum theory of atoms in molecules and crystals (QTAIMAC) to - and -type basis functions is introduced, which allows for an effective study of lanthanides and actinides in the bulk and , on the same grounds. Chemical bonding of the tetraphenyl phosphate uranium hexafluoride cocrystal [PPh][UF] is investigated, whose experimental charge density is available for comparison. Crystal packing effects on the charge density and chemical bonding are quantified and discussed. The methodology presented here allows reproducing all subtle features of the topology of the Laplacian of the experimental charge density. Such a remarkable qualitative and quantitative agreement represents a strong mutual validation of both approaches-experimental and computational-for charge density analysis of actinide compounds.
锕系元素化合物(分子配合物和材料)中的化学键本质在许多方面仍然难以捉摸。对其电子电荷分布进行全面分析对于阐明该系列元素的键合趋势和氧化态可能具有决定性作用。然而,从实验和理论角度来看,准确确定和可靠分析锕系元素化合物的电荷密度都面临着诸多挑战。最近在锕系元素材料电荷密度的实验重建和拓扑分析方面取得了重大进展[Gianopoulos., 2019, 6, 895]。在此,我们讨论理论方面的互补进展,这些进展使得能够从体相量子力学模拟中准确确定锕系元素材料的电荷密度。特别是,介绍了将实现巴德分子和晶体中原子量子理论(QTAIMAC)的Topond软件扩展到 - 型和 - 型基函数,这使得能够在相同基础上对体相中的镧系元素和锕系元素进行有效研究。对六氟磷酸铀四苯基酯共晶体[PPh][UF]的化学键进行了研究,其实验电荷密度可用于比较。对晶体堆积对电荷密度和化学键的影响进行了量化和讨论。这里介绍的方法能够重现实验电荷密度拉普拉斯算子拓扑结构的所有细微特征。这种显著的定性和定量一致性代表了对锕系元素化合物电荷密度分析的实验和计算这两种方法的有力相互验证。