Suppr超能文献

FAME 3:预测用于 I 相和 II 相代谢酶的合成化合物和天然产物的代谢部位。

FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes.

机构信息

Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics, Center for Bioinformatics , Universität Hamburg , 20146 Hamburg , Germany.

Faculty of Chemical Technology, Department of Informatics and Chemistry, CZ-OPENSCREEN: National Infrastructure for Chemical Biology , University of Chemistry and Technology Prague , 166 28 Prague 6 , Czech Republic.

出版信息

J Chem Inf Model. 2019 Aug 26;59(8):3400-3412. doi: 10.1021/acs.jcim.9b00376. Epub 2019 Aug 13.

Abstract

In this work we present the third generation of FAst MEtabolizer (FAME 3), a collection of extra trees classifiers for the prediction of sites of metabolism (SoMs) in small molecules such as drugs, druglike compounds, natural products, agrochemicals, and cosmetics. FAME 3 was derived from the MetaQSAR database ( Pedretti et al. 2018 , 61 , 1019 ), a recently published data resource on xenobiotic metabolism that contains more than 2100 substrates annotated with more than 6300 experimentally confirmed SoMs related to redox reactions, hydrolysis and other nonredox reactions, and conjugation reactions. In tests with holdout data, FAME 3 models reached competitive performance, with Matthews correlation coefficients (MCCs) ranging from 0.50 for a global model covering phase 1 and phase 2 metabolism, to 0.75 for a focused model for phase 2 metabolism. A model focused on cytochrome P450 metabolism yielded an MCC of 0.57. Results from case studies with several synthetic compounds, natural products, and natural product derivatives demonstrate the agreement between model predictions and literature data even for molecules with structural patterns clearly distinct from those present in the training data. The applicability domains of the individual models were estimated by a new, atom-based distance measure (FAMEscore) that is based on a nearest-neighbor search in the space of atom environments. FAME 3 is available via a public web service at https://nerdd.zbh.uni-hamburg.de/ and as a self-contained Java software package, free for academic and noncommercial research.

摘要

在这项工作中,我们展示了第三代 FAst MEtabolizer(FAME 3),这是一组用于预测小分子(如药物、类药物化合物、天然产物、农药和化妆品)代谢部位(SoM)的 ExtraTrees 分类器。FAME 3 源自 MetaQSAR 数据库(Pedretti 等人,2018 年,61,1019),这是一个最近发表的关于外源性代谢的数据资源,其中包含超过 2100 种底物,这些底物与超过 6300 个与氧化还原反应、水解和其他非氧化还原反应以及结合反应相关的实验证实的 SoM 有关。在使用保留数据进行的测试中,FAME 3 模型达到了具有竞争力的性能,Matthews 相关系数(MCC)的范围从涵盖 1 期和 2 期代谢的全局模型的 0.50 到专门针对 2 期代谢的模型的 0.75。专注于细胞色素 P450 代谢的模型产生的 MCC 为 0.57。对几种合成化合物、天然产物和天然产物衍生物的案例研究的结果表明,即使对于与训练数据中存在的结构模式明显不同的分子,模型预测与文献数据之间也存在一致性。通过一种新的基于原子的距离度量(FAMEscore)来估计单个模型的适用性域,该度量基于原子环境空间中的最近邻搜索。FAME 3 可通过公共网络服务 https://nerdd.zbh.uni-hamburg.de/ 获得,也可作为一个独立的 Java 软件包,免费用于学术和非商业研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验