Suppr超能文献

根治性放疗治疗头颈部鳞状细胞癌中上皮细胞黏附分子表达的预后价值。

Prognostic value of the expression of epithelial cell adhesion molecules in head and neck squamous cell carcinoma treated by definitive radiotherapy.

机构信息

Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan.

Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan.

出版信息

J Radiat Res. 2019 Nov 22;60(6):803-811. doi: 10.1093/jrr/rrz053.

Abstract

A reliable biomarker can contribute to appropriate treatment selection in the management of head and neck squamous cell carcinoma (HNSCC). Recently, epithelial cell adhesion molecule (EpCAM) was shown to have prognostic features in several malignancies. However, it remains to be elucidated whether EpCAM predicts prognosis of HNSCC after radiotherapy. Therefore, the prognostic potential of EpCAM in HNSCC patients treated by radiotherapy was investigated in this study. All HNSCCs patients examined between January 2013 and December 2015 were analyzed for the expression of EpCAM. One hundred HNSCC patients were identified who were treated by primary radiotherapy. Intense expression of EpCAM was found in 29 HNSCC patients. Two-year overall survival (OS) for patients with intense EpCAM expression was 62.2%, whereas it was 87.9% for those without (P = 0.011). In multivariate analysis, intense EpCAM expression was found to be an independent prognostic factors for OS (P = 0.036). Overall, EpCAM was found to be an independent prognostic factor for HNSCC.

摘要

可靠的生物标志物有助于对头颈部鳞状细胞癌(HNSCC)的治疗选择进行适当的管理。最近,上皮细胞黏附分子(EpCAM)在几种恶性肿瘤中表现出了预后特征。然而,EpCAM 是否能预测 HNSCC 患者放疗后的预后仍有待阐明。因此,本研究旨在探讨 EpCAM 对接受放疗的 HNSCC 患者的预后预测潜力。分析了 2013 年 1 月至 2015 年 12 月期间所有接受检查的 HNSCC 患者的 EpCAM 表达情况。确定了 100 名接受原发性放疗的 HNSCC 患者。在 29 名 HNSCC 患者中发现 EpCAM 表达强烈。EpCAM 表达强烈的患者 2 年总生存率(OS)为 62.2%,而 EpCAM 表达不强烈的患者为 87.9%(P=0.011)。多因素分析显示,EpCAM 表达强烈是 OS 的独立预后因素(P=0.036)。总的来说,EpCAM 是 HNSCC 的一个独立预后因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7aa/6873617/68de863a83d5/rrz053f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验