Di Jun, Chen Chao, Zhu Chao, Song Pin, Xiong Jun, Ji Mengxia, Zhou Jiadong, Fu Qundong, Xu Manzhang, Hao Wei, Xia Jiexiang, Li Shuzhou, Li Huaming, Liu Zheng
School of Chemistry and Chemical Engineering, Institute for Energy Research , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , P. R. China.
School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore.
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30786-30792. doi: 10.1021/acsami.9b08109. Epub 2019 Aug 13.
Surface defects in semiconductors have a significant role to tune the photocatalytic reactions. However, the dominant studied defect type is oxygen vacancy, and metal cation vacancies are seldom explored. Herein, bismuth vacancies are engineered into BiOBr through ultrathin structure control and employed to tune photocatalytic CO reduction. -BiOBr ultrathin nanosheets deliver a high selective CO generation rate of 20.1 μmol g h in pure water, without any cocatalyst, photosensitizer, and sacrificing reagent, roughly 3.8 times higher than that of BiOBr nanosheets. The increased CO reduction activity is ascribed to the tuned electronic structure, optimized CO adsorption, activation, and CO desorption process over -BiOBr ultrathin nanosheets. This work offers new opportunities for designing surface metal vacancies to optimize the CO photoreduction performances.
半导体中的表面缺陷在调节光催化反应方面具有重要作用。然而,目前主要研究的缺陷类型是氧空位,而金属阳离子空位很少被探索。在此,通过超薄结构控制将铋空位引入到BiOBr中,并用于调节光催化CO还原。-BiOBr超薄纳米片在纯水中可实现20.1 μmol g⁻¹ h⁻¹的高选择性CO生成速率,无需任何助催化剂、光敏剂和牺牲试剂,大约是BiOBr纳米片的3.8倍。CO还原活性的提高归因于-BiOBr超薄纳米片的电子结构调整、CO吸附、活化和脱附过程的优化。这项工作为设计表面金属空位以优化CO光还原性能提供了新的机会。