Suppr超能文献

比较卡尔曼滤波的潜在微分方程估计失败修正方法。

A Method of Correcting Estimation Failure in Latent Differential Equations with Comparisons to Kalman Filtering.

机构信息

Virginia Commonwealth University.

Georgia Institute of Technology.

出版信息

Multivariate Behav Res. 2020 May-Jun;55(3):405-424. doi: 10.1080/00273171.2019.1642730. Epub 2019 Jul 30.

Abstract

Studies have used the latent differential equation (LDE) model to estimate the parameters of damped oscillation in various phenomena, but it has been shown that correct, non-zero parameter estimates are only obtained when the latent series exhibits little or no process noise. Consequently, LDEs are limited to modeling deterministic processes with measurement error rather than those with random behavior in the true latent state. The reasons for these limitations are considered, and a piecewise deterministic approximation (PDA) algorithm is proposed to treat process noise outliers as functional discontinuities and obtain correct estimates of the damping parameter. Comprehensive, random-effects simulations were used to compare results with those obtained using a state-space model (SSM) based on the Kalman filter. The LDE with the PDA algorithm (LDEPDA) successfully recovered the simulated damping parameter under a variety of conditions when process noise was present in the latent state. The LDEPDA had greater precision and accuracy than the SSM when estimating parameters from data with sparse jump discontinuities, but worse performance for diffusion processes overall. All three methods were applied to a sample of postural sway data. The basic LDE estimated zero damping, while the LDEPDA and SSM estimated moderate to high damping. The SSM estimated the smallest standard errors for both frequency and damping parameter estimates.

摘要

研究已经使用潜在差分方程 (LDE) 模型来估计各种现象中阻尼振荡的参数,但已经表明,只有当潜在序列表现出很少或没有过程噪声时,才能获得正确的、非零的参数估计。因此,LDE 仅限于对具有测量误差的确定性过程进行建模,而不是对真实潜在状态中具有随机行为的过程进行建模。考虑了这些限制的原因,并提出了一种分段确定性逼近 (PDA) 算法,将过程噪声异常值视为功能不连续,并获得阻尼参数的正确估计。综合的、随机效应的模拟用于比较使用基于卡尔曼滤波器的状态空间模型 (SSM) 获得的结果。当潜在状态中存在过程噪声时,具有 PDA 算法的 LDE (LDEPDA) 成功地恢复了各种情况下的模拟阻尼参数。当从具有稀疏跳跃不连续性的数据中估计参数时,LDEPDA 比 SSM 具有更高的精度和准确性,但总体而言,对于扩散过程的性能更差。这三种方法都应用于姿势摆动数据的样本。基本的 LDE 估计为零阻尼,而 LDEPDA 和 SSM 估计为中等至高阻尼。SSM 对频率和阻尼参数估计的标准误差最小。

相似文献

2
Dynamic Regulation Responding to an External Stimulus: A Differential Equation Model.动态响应外部刺激的调节:微分方程模型。
Multivariate Behav Res. 2018 Nov-Dec;53(6):925-939. doi: 10.1080/00273171.2018.1503941. Epub 2018 Nov 20.
6
Estimation of noise parameters in dynamical system identification with Kalman filters.使用卡尔曼滤波器进行动态系统辨识时噪声参数的估计
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036214. doi: 10.1103/PhysRevE.86.036214. Epub 2012 Sep 26.
9
Modeling of nonlinear biological phenomena modeled by S-systems.由S-系统建模的非线性生物现象建模。
Math Biosci. 2014 Mar;249:75-91. doi: 10.1016/j.mbs.2014.01.011. Epub 2014 Feb 11.

本文引用的文献

2
A public data set of human balance evaluations.一个人类平衡评估的公共数据集。
PeerJ. 2016 Nov 2;4:e2648. doi: 10.7717/peerj.2648. eCollection 2016.
5
OpenMx 2.0: Extended Structural Equation and Statistical Modeling.OpenMx 2.0:扩展结构方程与统计建模
Psychometrika. 2016 Jun;81(2):535-49. doi: 10.1007/s11336-014-9435-8. Epub 2015 Jan 27.
6
Dynamical systems analysis applied to working memory data.应用于工作记忆数据的动态系统分析。
Front Psychol. 2014 Jul 3;5:687. doi: 10.3389/fpsyg.2014.00687. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验