Suppr超能文献

鉴定复杂群体历史中受正选择作用的基因座。

Identifying loci under positive selection in complex population histories.

机构信息

Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark.

Centre for Macroecology, Evolution and Climate, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copehnagen 2100, Denmark.

出版信息

Genome Res. 2019 Sep;29(9):1506-1520. doi: 10.1101/gr.246777.118. Epub 2019 Jul 30.

Abstract

Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history of past divergence and admixture events among any number of populations. The method-called graph-aware retrieval of selective sweeps ()-has good power to detect loci in the genome with strong evidence for past selective sweeps and can also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways. We find new candidate genes for important adaptive functions, including immunity and metabolism in understudied human populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.

摘要

详细建模物种的历史对于了解自然选择如何随时间推移而发挥作用至关重要。然而,大多数旨在检测测序基因组中阳性选择的方法都将过去历史的简化表示作为遗传漂变的零模型。在这里,我们提出了第一个可以使用任意复杂的混合图来检测基因组中强局部适应的方法,这些图通常用于描述过去的分歧和任何数量的群体之间的混合事件的历史。该方法称为基于图的选择扫描检索(Graph-aware Retrieval of Selective Sweeps,GARSS),它具有很好的检测基因组中具有强烈选择扫描证据的基因座的能力,并且还可以识别哪个图分支受到选择扫描的影响最大。作为其效用的证据,我们将该方法应用于牛、鳕鱼和人类群体基因组数据,这些数据包含以复杂方式相关的多个群体的面板。我们发现了新的候选基因,这些基因与重要的适应性功能有关,包括在研究较少的人类群体中的免疫和代谢功能,以及在特定的牛品种中的肌肉质量、产奶量和温顺性。我们还能够确定由于大西洋鳕鱼历史上的倒位而导致的大分化区域的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce77/6724678/6897929dd54c/1506f02.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验