Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Sci Rep. 2019 Jul 30;9(1):11055. doi: 10.1038/s41598-019-47444-6.
Current brain spheroids or organoids derived from human induced pluripotent stem cells (hiPSCs) still lack a microglia component, the resident immune cells in the brain. The objective of this study is to engineer brain region-specific organoids from hiPSCs incorporated with isogenic microglia-like cells in order to enhance immune function. In this study, microglia-like cells were derived from hiPSCs using a simplified protocol with stage-wise growth factor induction, which expressed several phenotypic markers, including CD11b, IBA-1, CX3CR1, and P2RY12, and phagocytosed micron-size super-paramagnetic iron oxides. The derived cells were able to upregulate pro-inflammatory gene (TNF-α) and secrete anti-inflammatory cytokines (i.e., VEGF, TGF-β1, and PGE2) when stimulated with amyloid β42 oligomers, lipopolysaccharides, or dexamethasone. The derived isogenic dorsal cortical (higher expression of TBR1 and PAX6) and ventral (higher expression of NKX2.1 and PROX1) spheroids/organoids displayed action potentials and synaptic activities. Co-culturing the microglia-like cells (MG) with the dorsal (D) or ventral (V) organoids showed differential migration ability, intracellular Ca signaling, and the response to pro-inflammatory stimuli (V-MG group had higher TNF-α and TREM2 expression). Transcriptome analysis exhibited 37 microglia-related genes that were differentially expressed in MG and D-MG groups. In addition, the hybrid D-MG spheroids exhibited higher levels of immunoreceptor genes in activating members, but the MG group contained higher levels for most of genes in inhibitory members (except SIGLEC5 and CD200). This study should advance our understanding of the microglia function in brain-like tissue and establish a transformative approach to modulate cellular microenvironment toward the goal of treating various neurological disorders.
目前源自人类诱导多能干细胞(hiPSC)的脑球体或类器官仍然缺乏小胶质细胞成分,小胶质细胞是大脑中的常驻免疫细胞。本研究的目的是通过将具有同源小胶质样细胞的 hiPSC 工程化为脑区特异性类器官,以增强免疫功能。在这项研究中,使用分阶段生长因子诱导的简化方案从 hiPSC 中衍生出小胶质样细胞,这些细胞表达了几种表型标志物,包括 CD11b、IBA-1、CX3CR1 和 P2RY12,并吞噬了微米大小的超顺磁性氧化铁。当用淀粉样β42 寡聚物、脂多糖或地塞米松刺激时,衍生的细胞能够上调促炎基因(TNF-α)并分泌抗炎细胞因子(即 VEGF、TGF-β1 和 PGE2)。衍生的同源背皮质(更高表达 TBR1 和 PAX6)和腹侧(更高表达 NKX2.1 和 PROX1)球体/类器官显示动作电位和突触活动。将小胶质样细胞(MG)与背侧(D)或腹侧(V)类器官共培养显示出不同的迁移能力、细胞内 Ca 信号和对促炎刺激的反应(V-MG 组具有更高的 TNF-α 和 TREM2 表达)。转录组分析显示,MG 和 D-MG 组中有 37 个与小胶质细胞相关的基因表达存在差异。此外,杂交 D-MG 球体在激活成员中的免疫受体基因水平更高,但 MG 组在大多数抑制成员(除 SIGLEC5 和 CD200 外)中的基因水平更高。本研究应增进我们对类脑组织中小胶质细胞功能的理解,并建立一种变革性的方法来调节细胞微环境,以实现治疗各种神经疾病的目标。