1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida.
2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida.
Tissue Eng Part A. 2018 Jul;24(13-14):1125-1137. doi: 10.1089/ten.TEA.2017.0423. Epub 2018 Feb 27.
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and causes cognitive impairment and memory deficits of the patients. The mechanism of AD is not well known, due to lack of human brain models. Recently, mini-brain tissues called organoids have been derived from human induced pluripotent stem cells (hiPSCs) for modeling human brain development and neurological diseases. Thus, the objective of this research is to model and characterize neural degeneration microenvironment using three-dimensional (3D) forebrain cortical organoids derived from hiPSCs and study the response to the drug treatment. It is hypothesized that the 3D forebrain organoids derived from hiPSCs with AD-associated genetic background may partially recapitulate the extracellular microenvironment in neural degeneration. To test this hypothesis, AD-patient derived hiPSCs with presenilin-1 mutation were used for cortical organoid generation. AD-related inflammatory responses, matrix remodeling and the responses to DAPT, heparin (completes with heparan sulfate proteoglycans [HSPGs] to bind Aβ42), and heparinase (digests HSPGs) treatments were investigated. The results indicate that the cortical organoids derived from AD-associated hiPSCs exhibit a high level of Aβ42 comparing with healthy control. In addition, the AD-derived organoids result in an elevated gene expression of proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, upregulate syndecan-3, and alter matrix remodeling protein expression. Our study demonstrates the capacity of hiPSC-derived organoids for modeling the changes of extracellular microenvironment and provides a potential approach for AD-related drug screening.
阿尔茨海默病(AD)是最常见的神经退行性疾病之一,可导致患者认知障碍和记忆缺失。由于缺乏人类大脑模型,AD 的发病机制尚不清楚。最近,人们从人类诱导多能干细胞(hiPSC)中衍生出一种称为类器官的微型脑组织,用于模拟人类大脑发育和神经疾病。因此,本研究的目的是使用源自 hiPSC 的三维(3D)前脑皮质类器官来模拟和表征神经退行性变微环境,并研究对药物治疗的反应。假设源自具有 AD 相关遗传背景的 hiPSC 的 3D 前脑类器官可能部分再现神经退行性变中的细胞外微环境。为了验证这一假设,使用携带早老素-1 突变的 AD 患者来源的 hiPSC 用于皮质类器官生成。研究了 AD 相关的炎症反应、基质重塑以及对 DAPT、肝素(与硫酸乙酰肝素蛋白聚糖 [HSPGs] 结合以结合 Aβ42)和肝素酶(消化 HSPGs)的反应。结果表明,源自与 AD 相关的 hiPSC 的皮质类器官与健康对照相比表现出高水平的 Aβ42。此外,AD 衍生的类器官导致促炎细胞因子白细胞介素 6 和肿瘤坏死因子-α 的基因表达上调,上调 syndecan-3,并改变基质重塑蛋白的表达。我们的研究证明了 hiPSC 衍生的类器官用于模拟细胞外微环境变化的能力,并为 AD 相关药物筛选提供了一种潜在方法。
Tissue Eng Part A. 2018-2-27
Mol Psychiatry. 2018-8-31
Methods Mol Biol. 2023
ACS Biomater Sci Eng. 2021-1-11
NPJ Parkinsons Dis. 2024-10-20
Front Psychiatry. 2023-11-9
Nat Rev Neurosci. 2017-10
Tissue Eng Part A. 2017-9-18
Tissue Eng Part A. 2017-8-31
Nature. 2017-5-4
Hum Mol Genet. 2017-7-15
Acta Biomater. 2017-4-15