NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France.
Hum Mol Genet. 2019 Oct 15;28(20):3391-3405. doi: 10.1093/hmg/ddz186.
Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.
微管的结构组成蛋白微管蛋白的可逆脱酪氨酸化对于神经元生理学至关重要。最近发现,负责脱酪氨酸化的酶是血管抑肽(VASH)与小 VASH 结合蛋白(SVBP)之一或二者组成的复合物。在这里,我们报道了三个有亲缘关系的家族,每个家族都包含多个个体,他们均携带 SVBP 截断变异(p.Q28和 p.K13Nfs18)导致的 SVBP 双等位基因失活。受影响的个体表现出脑异常,包括小头畸形、智力障碍以及运动和言语发育迟缓。对携带致病性 SVBP 变异的细胞进行免疫印迹检测表明,编码蛋白不稳定且无功能,导致 VASH 脱酪氨酸化活性完全丧失。Svbp 基因敲除小鼠表现出微管蛋白酪氨酸化水平的急剧增加和脑组织中脱酪氨酸化微管蛋白的减少。在培养的神经元中观察到类似的微管蛋白酪氨酸化水平改变,并与轴突分化和结构缺陷有关。通过解剖磁共振成像对 Svbp 基因敲除小鼠大脑进行形态学分析表明,SVBP 缺失的影响广泛,大脑体积减少 7%,存在大量结构缺陷,部分白质束减少 30%。Svbp 基因敲除小鼠表现出行为缺陷,包括轻度多动、焦虑程度降低和社交行为受损。然而,它们没有明显的记忆缺陷。因此,SVBP 缺陷型小鼠再现了人类患者中观察到的多种特征。总之,我们的数据表明 SVBP 中的有害变异通过导致大脑微管蛋白酪氨酸化的重大变化以及微管动力学和神经元生理学的改变,引起这种神经发育病理学。