Suminski Richard Robert, Dominick Gregory, Saponaro Philip
Center for Innovative Health Research, Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, United States.
JMIR Res Protoc. 2019 Jul 30;8(7):e12976. doi: 10.2196/12976.
A considerable proportion of outdoor physical activity (PA) is done on sidewalks and streets, necessitating the development of a reliable measure of PA performed in these settings. The Block Walk Method (BWM) is one of the more common approaches for this purpose. Although it utilizes reliable observation techniques and displays criterion validity, it remains relatively unchanged since its introduction in 2006. It is a nontechnical, labor-intensive, first generation method. Advancing the BWM would contribute significantly to our understanding of PA behavior.
This study will develop and test a new BWM that utilizes a wearable video device (WVD) and computer video analysis to assess PAs performed on sidewalks and streets. The specific aims are to improve the BWM by incorporating a WVD (eyeglasses with a high-definition video camera in the frame) into the methodology and advance this WVD-enhanced BWM by applying machine learning and recognition software to automatically extract information on PAs occurring on the sidewalks and streets from the videos.
Trained observers (1 wearing and 1 not wearing the WVD) will walk together at a set pace along predetermined 1000 ft sidewalk and street observation routes representing low, medium, and high walkable areas. During the walks, the non-WVD observer will use the traditional BWM to record the numbers of individuals standing, sitting, walking, biking, and running in observation fields along the routes. The WVD observer will continuously video the observation fields. Later, 2 investigators will view the videos to determine the number of individuals performing PAs in the observation fields. The video data will then be analyzed automatically using multiple deep convolutional neural networks (CNNs) to determine the number of humans in the observation fields and the type of PAs performed. Bland Altman methods and intraclass correlation coefficients (ICCs) will be used to assess agreement. Potential sources of error such as occlusions (eg, trees) will be assessed using moderator analyses.
Outcomes from this study are pending; however, preliminary studies supporting the research protocol indicate that the BWM is reliable for determining the PA mode (Cramer V=.89; P<.001), the address where the PA occurred (Cohen kappa=.85; P<.001), and the number engaged in an observed PA (ICC=.85; P<.001). The number of individuals seen walking along routes was correlated with several environmental characteristics such as sidewalk quality (r=.39; P=.02) and neighborhood aesthetics (r=.49; P<.001). Furthermore, we have used CNNs to detect cars, bikes, and pedestrians as well as individuals using park facilities.
We expect the new approach will enhance measurement accuracy while reducing the burden of data collection. In the future, the capabilities of the WVD-CNN system will be expanded to allow for the determination of other characteristics captured in videos such as caloric expenditure and environmental conditions.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/12976.
相当一部分户外体育活动是在人行道和街道上进行的,因此需要开发一种可靠的方法来测量在这些环境中进行的体育活动。街区步行法(BWM)是为此目的较为常用的方法之一。尽管它采用了可靠的观察技术并显示出标准效度,但自2006年引入以来相对没有变化。它是一种非技术性、劳动密集型的第一代方法。改进BWM将极大地有助于我们对体育活动行为的理解。
本研究将开发并测试一种新的BWM,该方法利用可穿戴视频设备(WVD)和计算机视频分析来评估在人行道和街道上进行的体育活动。具体目标是通过将WVD(镜架中带有高清摄像机的眼镜)纳入方法中来改进BWM,并通过应用机器学习和识别软件从视频中自动提取人行道和街道上发生的体育活动信息,从而推进这种WVD增强的BWM。
训练有素的观察者(1名佩戴WVD,1名不佩戴WVD)将以设定的步伐一起沿着代表低、中、高可步行区域的预定1000英尺人行道和街道观察路线行走。在行走过程中,不佩戴WVD的观察者将使用传统的BWM记录沿途观察区域内站立、坐着、行走、骑自行车和跑步的人数。佩戴WVD的观察者将持续拍摄观察区域。之后,两名研究人员将查看视频以确定观察区域内进行体育活动的人数。然后将使用多个深度卷积神经网络(CNN)自动分析视频数据,以确定观察区域内的人数以及进行的体育活动类型。将使用布兰德-奥特曼方法和组内相关系数(ICC)来评估一致性。将使用调节分析评估遮挡(如树木)等潜在误差来源。
本研究的结果尚未得出;然而,支持该研究方案的初步研究表明,BWM在确定体育活动模式(克莱默V = 0.89;P <.001)、体育活动发生的地点(科恩kappa = 0.85;P <.001)以及参与观察到的体育活动的人数(ICC = 0.85;P <.001)方面是可靠的。沿途看到的行走人数与一些环境特征相关,如人行道质量(r = 0.39;P = 0.02)和社区美观程度(r = 0.49;P <.001)。此外,我们已经使用CNN来检测汽车、自行车和行人以及使用公园设施的个人。
我们预计新方法将提高测量准确性,同时减轻数据收集负担。未来,WVD-CNN系统的功能将得到扩展,以允许确定视频中捕获的其他特征,如热量消耗和环境条件。
国际注册报告标识符(IRRID):PRR1-10.2196/12976