Suppr超能文献

在普查区层面评估新增自行车道和人行道对健康的影响:多模型比较

Estimating the Health Effects of Adding Bicycle and Pedestrian Paths at the Census Tract Level: Multiple Model Comparison.

作者信息

Gore Ross, Lynch Christopher J, Jordan Craig A, Collins Andrew, Robinson R Michael, Fuller Gabrielle, Ames Pearson, Keerthi Prateek, Kandukuri Yash

机构信息

Virginia Modeling Analysis and Simulation Center, Old Dominion University, Suffolk, VA, United States.

Engineering Management & Systems Engineering, Old Dominion University, Norfolk, VA, United States.

出版信息

JMIR Public Health Surveill. 2022 Aug 24;8(8):e37379. doi: 10.2196/37379.

Abstract

BACKGROUND

Adding additional bicycle and pedestrian paths to an area can lead to improved health outcomes for residents over time. However, quantitatively determining which areas benefit more from bicycle and pedestrian paths, how many miles of bicycle and pedestrian paths are needed, and the health outcomes that may be most improved remain open questions.

OBJECTIVE

Our work provides and evaluates a methodology that offers actionable insight for city-level planners, public health officials, and decision makers tasked with the question "To what extent will adding specified bicycle and pedestrian path mileage to a census tract improve residents' health outcomes over time?"

METHODS

We conducted a factor analysis of data from the American Community Survey, Center for Disease Control 500 Cities project, Strava, and bicycle and pedestrian path location and use data from two different cities (Norfolk, Virginia, and San Francisco, California). We constructed 2 city-specific factor models and used an algorithm to predict the expected mean improvement that a specified number of bicycle and pedestrian path miles contributes to the identified health outcomes.

RESULTS

We show that given a factor model constructed from data from 2011 to 2015, the number of additional bicycle and pedestrian path miles in 2016, and a specific census tract, our models forecast health outcome improvements in 2020 more accurately than 2 alternative approaches for both Norfolk, Virginia, and San Francisco, California. Furthermore, for each city, we show that the additional accuracy is a statistically significant improvement (P<.001 in every case) when compared with the alternate approaches. For Norfolk, Virginia (n=31 census tracts), our approach estimated, on average, the percentage of individuals with high blood pressure in the census tract within 1.49% (SD 0.85%), the percentage of individuals with diabetes in the census tract within 1.63% (SD 0.59%), and the percentage of individuals who had >2 weeks of poor physical health days in the census tract within 1.83% (SD 0.57%). For San Francisco (n=49 census tracts), our approach estimates, on average, that the percentage of individuals who had a stroke in the census tract is within 1.81% (SD 0.52%), and the percentage of individuals with diabetes in the census tract is within 1.26% (SD 0.91%).

CONCLUSIONS

We propose and evaluate a methodology to enable decision makers to weigh the extent to which 2 bicycle and pedestrian paths of equal cost, which were proposed in different census tracts, improve residents' health outcomes; identify areas where bicycle and pedestrian paths are unlikely to be effective interventions and other strategies should be used; and quantify the minimum amount of additional bicycle path miles needed to maximize health outcome improvements. Our methodology shows statistically significant improvements, compared with alternative approaches, in historical accuracy for 2 large cities (for 2016) within different geographic areas and with different demographics.

摘要

背景

随着时间的推移,在一个地区增加更多的自行车道和人行道能够改善居民的健康状况。然而,定量确定哪些地区能从自行车道和人行道中获得更多益处、需要多少英里的自行车道和人行道,以及哪些健康状况可能得到最大改善,这些问题仍然悬而未决。

目的

我们的研究提供并评估了一种方法,该方法可为城市规划者、公共卫生官员以及面临“在人口普查区增加特定里程的自行车道和人行道,随着时间的推移将在多大程度上改善居民的健康状况”这一问题的决策者提供可操作的见解。

方法

我们对来自美国社区调查、疾病控制中心500个城市项目、Strava的数据,以及来自两个不同城市(弗吉尼亚州诺福克市和加利福尼亚州旧金山市)的自行车道和人行道位置及使用数据进行了因子分析。我们构建了两个特定城市的因子模型,并使用一种算法来预测特定数量的自行车道和人行道英里数对已确定的健康状况所带来的预期平均改善情况。

结果

我们表明,给定一个基于2011年至2015年数据构建的因子模型、2016年新增的自行车道和人行道英里数,以及一个特定的人口普查区,我们的模型比另外两种方法更准确地预测了弗吉尼亚州诺福克市和加利福尼亚州旧金山市在2020年的健康状况改善情况。此外,对于每个城市,我们表明与替代方法相比,额外的准确性在统计学上有显著提高(每种情况下P<0.001)。对于弗吉尼亚州诺福克市(n = 31个人口普查区),我们的方法平均估计人口普查区内高血压患者的百分比在1.49%以内(标准差0.85%),人口普查区内糖尿病患者的百分比在1.63%以内(标准差0.59%),以及人口普查区内身体健康状况不佳超过2周的患者的百分比在1.83%以内(标准差r 0.57%)。对于旧金山市(n = 49个人口普查区),我们的方法平均估计人口普查区内中风患者的百分比在1.81%以内(标准差0.52%),人口普查区内糖尿病患者的百分比在1.26%以内(标准差0.91%)。

结论

我们提出并评估了一种方法,使决策者能够权衡在不同人口普查区提议的两条成本相同的自行车道和人行道在多大程度上改善居民的健康状况;确定自行车道和人行道不太可能成为有效干预措施而应采用其他策略的区域;并量化为使健康状况改善最大化所需的额外自行车道英里数的最小值。与替代方法相比,我们的方法在不同地理区域和不同人口统计学特征的两个大城市(针对2016年)的历史准确性方面显示出统计学上显著的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验