Suppr超能文献

使用行政数据验证一种循环算法以估算系统性癌症治疗的疗程数

Validation of a Cyclic Algorithm to Proxy Number of Lines of Systemic Cancer Therapy Using Administrative Data.

作者信息

Weymann Deirdre, Costa Sarah, Regier Dean A

机构信息

BC Cancer, Vancouver, British Columbia, Canada.

University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

JCO Clin Cancer Inform. 2019 Aug;3:1-10. doi: 10.1200/CCI.19.00022.

Abstract

PURPOSE

Researchers are automating the process for identifying the number of lines of systemic cancer therapy received by patients. To date, algorithm development has involved manual modifications to predefined classification rules. In this study, we propose a supervised learning algorithm for determining the best-performing proxy for number of lines of therapy and validate this approach in four patient groups.

MATERIALS AND METHODS

We retrospectively analyzed BC Cancer pharmacy records from patients' cancer diagnosis until end of follow-up (cohort-specific, 2014/2015). We created and validated a cyclic algorithm in patients with advanced cancers of varying histologies, diffuse large B-cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia. To assess internal and external validity, we used a split-sample approach for all analyses and considered lines of therapy identified through manual review as our criterion standard. We measured agreement using correlation coefficients, mean squared error, nonparametric hypothesis testing, and quantile-quantile plots.

RESULTS

Cohorts comprised 91 patients with advanced cancers, 121 with chronic lymphocytic leukemia, 440 with follicular lymphoma, and 679 with diffuse large B-cell lymphoma. Number of lines of therapy received and patients' treatment period length varied substantially across cohorts. Despite these differences, our algorithm successfully identified a best-performing proxy for number of lines of therapy for each cohort, which was moderate to highly correlated with (within-sample: 0.73 ≤ Pearson correlation ≤ 0.84; out-of-sample: 0.52 ≤ Pearson correlation ≤ 0.76) and whose distribution did not significantly differ from the criterion standard within or out of sample ( > .10).

CONCLUSION

Supervised learning is an ideal tool for generating a best-performing proxy that recognizes prescription drug patterns and approximates number of lines of therapy. Our cyclic approach can be used in jurisdictions with access to administrative pharmacy data.

摘要

目的

研究人员正在自动化识别患者接受的系统性癌症治疗疗程数的过程。迄今为止,算法开发涉及对预定义分类规则的手动修改。在本研究中,我们提出一种监督学习算法,用于确定治疗疗程数的最佳替代指标,并在四个患者群体中验证该方法。

材料与方法

我们回顾性分析了不列颠哥伦比亚癌症机构药房记录,这些记录涵盖患者从癌症诊断到随访结束的时间段(特定队列,2014/2015年)。我们在患有不同组织学类型的晚期癌症、弥漫性大B细胞淋巴瘤、滤泡性淋巴瘤和慢性淋巴细胞白血病的患者中创建并验证了一种循环算法。为评估内部和外部有效性,我们在所有分析中采用了分割样本方法,并将通过人工审核确定的治疗疗程数作为我们的标准对照。我们使用相关系数、均方误差、非参数假设检验和分位数 - 分位数图来测量一致性。

结果

队列包括91例晚期癌症患者、121例慢性淋巴细胞白血病患者、440例滤泡性淋巴瘤患者和679例弥漫性大B细胞淋巴瘤患者。不同队列中接受的治疗疗程数和患者的治疗时长差异很大。尽管存在这些差异,我们的算法成功为每个队列确定了治疗疗程数最佳替代指标,该指标与治疗疗程数具有中度至高度相关性(样本内:0.73≤皮尔逊相关系数≤0.84;样本外:0.52≤皮尔逊相关系数≤0.76),并且其分布在样本内和样本外与标准对照均无显著差异(P>.10)。

结论

监督学习是生成识别处方药模式并近似治疗疗程数的最佳替代指标的理想工具。我们的循环方法可用于能够获取行政药房数据的司法管辖区。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验