Suppr超能文献

精准肿瘤学中的匹配方法:介绍与实例说明。

Matching methods in precision oncology: An introduction and illustrative example.

机构信息

Canadian Centre for Applied Research in Cancer Control, Cancer Control Research, BC Cancer, Vancouver, BC, Canada.

Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada.

出版信息

Mol Genet Genomic Med. 2021 Jan;9(1):e1554. doi: 10.1002/mgg3.1554. Epub 2020 Nov 25.

Abstract

BACKGROUND

Randomized controlled trials (RCTs) are uncommon in precision oncology. We provide an introduction and illustrative example of matching methods for evaluating precision oncology in the absence of RCTs. We focus on British Columbia's Personalized OncoGenomics (POG) program, which applies whole-genome and transcriptome analysis (WGTA) to inform advanced cancer care.

METHODS

Our cohort comprises 230 POG patients enrolled between 2014 and 2015 and matched POG-naive controls. We generated our matched cohort using 1:1 propensity score matching (PSM) and genetic matching prior to exploring survival differences.

RESULTS

We find that genetic matching outperformed PSM when balancing covariates. In all cohorts, overall survival did not significantly differ across POG and POG-naive patients (p > 0.05). Stratification by WGTA-informed treatment indicated unmatched survival differences. Patients whose WGTA information led to treatment change were at a reduced hazard of death compared to POG-naive controls in all cohorts, with estimated hazard ratios ranging from 0.33 (95% CI: 0.13, 0.81) to 0.41 (95% CI: 0.17, 0.98).

CONCLUSION

These results signal that clinical effectiveness of precision oncology approaches will depend on rates of genomics-informed treatment change. Our study will guide future evaluations of precision oncology and support reliable effect estimation when RCT data are unavailable.

摘要

背景

随机对照试验(RCT)在精准肿瘤学中较为少见。本文提供了一种在缺乏 RCT 的情况下评估精准肿瘤学的匹配方法,并给出了一个实例。本文聚焦于不列颠哥伦比亚省的个体化肿瘤基因组学(POG)项目,该项目采用全基因组和转录组分析(WGTA)来指导晚期癌症治疗。

方法

我们的队列纳入了 2014 年至 2015 年期间入组的 230 名 POG 患者和匹配的 POG 初治对照者。我们使用 1:1 倾向评分匹配(PSM)和遗传匹配方法来构建匹配队列,并在探索生存差异之前对其进行了平衡。

结果

我们发现,在平衡协变量方面,遗传匹配优于 PSM。在所有队列中,POG 患者与 POG 初治患者的总生存率均无显著差异(p>0.05)。根据 WGTA 指导的治疗进行分层后,发现了未匹配的生存差异。在所有队列中,WGTA 信息导致治疗改变的患者的死亡风险较 POG 初治对照组降低,估计的风险比范围为 0.33(95%CI:0.13,0.81)至 0.41(95%CI:0.17,0.98)。

结论

这些结果表明,精准肿瘤学方法的临床效果将取决于基因组学指导治疗改变的比率。本研究将指导未来对精准肿瘤学的评估,并在缺乏 RCT 数据时支持可靠的效果估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6808/7963415/e8bed0a18ec5/MGG3-9-e1554-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验