Suppr超能文献

治疗前中性粒细胞与淋巴细胞比值可预测转移性结直肠癌患者接受 TAS-102 治疗后的生存情况。

Pretreatment Neutrophil-to-Lymphocyte Ratio Predicts Survival After TAS-102 Treatment of Patients With Metastatic Colorectal Cancer.

机构信息

Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan

Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan.

出版信息

Anticancer Res. 2019 Aug;39(8):4343-4350. doi: 10.21873/anticanres.13602.

Abstract

BACKGROUND/AIM: TAS-102 is recommended as salvage-line therapy for metastatic colorectal cancer (mCRC), but practical predictors for its efficacy are lacking.

PATIENTS AND METHODS

In a single-institutional retrospective study of 33 patients treated with TAS-102, we investigated the predictive value of the pretreatment neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), and lymphocyte-monocyte (LMR) ratios for progression-free (PFS) and overall (OS) survival. Predictive ability using cut-offs of the median value (3.14) and 5 for NLR were compared.

RESULTS

In univariate analysis, Eastern Cooperative Oncology Group performance score, NLR, and PLR were negatively significantly associated with PFS and OS. The number of treatment lines was negatively associated with PFS. The NLR cut-off of 5 was superior to the median value. Multivariate analyses showed a significant prognostic impact for NLR at cut-off 5 (hazard ratio(HR)=6.26, p=0.02 for PFS; HR=6.97, p=0.07 for OS).

CONCLUSION

The pretreatment NLR is a prognostic biomarker for patients with mCRC who receive TAS-102 treatment.

摘要

背景/目的:TAS-102 被推荐作为转移性结直肠癌(mCRC)的二线治疗药物,但缺乏其疗效的实用预测指标。

患者和方法

在一项对 33 名接受 TAS-102 治疗的患者进行的单机构回顾性研究中,我们研究了治疗前中性粒细胞与淋巴细胞(NLR)、血小板与淋巴细胞(PLR)和淋巴细胞与单核细胞(LMR)比值对无进展生存期(PFS)和总生存期(OS)的预测价值。使用中位数(3.14)和 5 作为 NLR 的截断值比较了预测能力。

结果

在单因素分析中,东部肿瘤协作组(ECOG)表现评分、NLR 和 PLR 与 PFS 和 OS 呈显著负相关。治疗线数与 PFS 呈负相关。NLR 的截断值为 5 优于中位数。多因素分析显示,NLR 截断值为 5 时具有显著的预后影响(PFS 的 HR=6.26,p=0.02;OS 的 HR=6.97,p=0.07)。

结论

治疗前 NLR 是接受 TAS-102 治疗的 mCRC 患者的预后生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验