Construction and Building Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), 2033 - Elhorria, Heliopolis, Cairo, Egypt.
School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia.
Sci Data. 2019 Jul 31;6(1):138. doi: 10.1038/s41597-019-0144-0.
This study developed 0.05° × 0.05° land-only datasets of daily maximum and minimum temperatures in the densely populated Central North region of Egypt (CNE) for the period 1981-2017. Existing coarse-resolution datasets were evaluated to find the best dataset for the study area to use as a base of the new datasets. The Climate Prediction Centre (CPC) global temperature dataset was found to be the best. The CPC data were interpolated to a spatial resolution of 0.05° latitude/longitude using linear interpolation technique considering the flat topography of the study area. The robust kernel density distribution mapping method was used to correct the bias using observations, and WorldClim v.2 temperature climatology was used to adjust the spatial variability in temperature. The validation of CNE datasets using probability density function skill score and hot and cold extremes tail skill scores showed remarkable improvement in replicating the spatial and temporal variability in observed temperature. Because CNE datasets are the best available high-resolution estimate of daily temperatures, they will be beneficial for climatic and hydrological studies.
本研究开发了 1981-2017 年埃及中北部人口稠密地区(CNE)每日最高和最低温度的 0.05°×0.05°土地数据集。评估了现有的粗分辨率数据集,以找到最适合研究区域的数据集作为新数据集的基础。气候预测中心(CPC)全球温度数据集被发现是最好的。CPC 数据使用考虑到研究区域平坦地形的线性插值技术插值到 0.05°纬度/经度的空间分辨率。稳健核密度分布映射方法用于使用观测值校正偏差,并且使用 WorldClim v.2 温度气候学来调整温度的空间变异性。使用概率密度函数技能得分和冷热极端尾部技能得分对 CNE 数据集进行验证,结果表明在复制观测温度的时空变异性方面有显著改进。由于 CNE 数据集是最可用的每日温度高分辨率估计值,因此它们将有益于气候和水文研究。