Medical Physics and Biomedical Engineering, University College London, UK.
Medical Physics and Biomedical Engineering, University College London, UK.
J Neurosci Methods. 2021 Jul 1;358:109140. doi: 10.1016/j.jneumeth.2021.109140. Epub 2021 Mar 24.
The lack of understanding of fascicular organisation in peripheral nerves limits the potential of vagus nerve stimulation therapy. Two promising methods may be employed to identify the functional anatomy of fascicles within the nerve: fast neural electrical impedance tomography (EIT), and penetrating multi-electrode arrays (MEA). These could provide a means to image the compound action potential within fascicles in the nerve.
We compared the ability to localise fascicle activity between silicon shanks (SS) and carbon fibre (CF) multi-electrode arrays and fast neural EIT, with micro-computed tomography (MicroCT) as an independent reference. Fast neural EIT in peripheral nerves was only recently developed and MEA technology has been used only sparingly in nerves and not for source localisation. Assessment was performed in rat sciatic nerves while evoking neural activity in the tibial and peroneal fascicles.
Recorded compound action potentials were larger with CF compared to SS (∼700 μV vs ∼300 μV); however, background noise was greater (6.3 μV vs 1.7 μV) leading to lower SNR. Maximum spatial discrimination between Centres-of-Mass of fascicular activity was achieved by fast neural EIT (402 ± 30 μm) and CF MEA (414 ± 123 μm), with no statistical difference between MicroCT (625 ± 17 μm) and CF (p > 0.05) and between CF and EIT (p > 0.05). Compared to CF MEAs, SS MEAs had a lower discrimination power (103 ± 51 μm, p < 0.05).
EIT and CF MEAs showed localisation power closest to MicroCT. Silicon MEAs adopted in this study failed to discriminate fascicle location. Re-design of probe geometry may improve results.
Nerve EIT is an accurate tool for assessment of fascicular position within nerves. Accuracy of EIT and CF MEA is similar to the reference method. We give technical recommendations for performing multi-electrode recordings in nerves.
对外周神经中纤维束组织的理解不足限制了迷走神经刺激疗法的潜力。有两种很有前景的方法可用于确定神经中纤维束的功能解剖结构:快速神经电阻抗断层成像(EIT)和穿透式多电极阵列(MEA)。这些方法可以提供一种在神经纤维束内成像复合动作电位的手段。
我们比较了硅突(SS)和碳纤维(CF)多电极阵列以及快速神经 EIT 定位纤维束活动的能力,以微计算机断层扫描(MicroCT)作为独立参考。快速神经 EIT 在外周神经中是最近才发展起来的,MEA 技术仅在神经中很少使用,并且不能用于源定位。评估是在大鼠坐骨神经中进行的,同时在胫骨和腓肠神经束中诱发神经活动。
与 SS 相比,CF 记录的复合动作电位更大(约 700µV 与约 300µV);然而,背景噪声更大(6.3µV 与 1.7µV),导致 SNR 较低。通过快速神经 EIT(402±30μm)和 CF MEA(414±123μm)实现了纤维束活动的中心-of-Mass 之间的最大空间分辨,与 MicroCT(625±17μm)和 CF(p>0.05)以及 CF 和 EIT(p>0.05)之间没有统计学差异。与 CF MEA 相比,SS MEA 的分辨能力较低(103±51μm,p<0.05)。
EIT 和 CF MEA 显示出与 MicroCT 最接近的定位能力。本研究中采用的硅 MEA 无法分辨纤维束的位置。探头几何形状的重新设计可能会改善结果。
神经 EIT 是评估神经内纤维束位置的准确工具。EIT 和 CF MEA 的准确性与参考方法相似。我们给出了在神经中进行多电极记录的技术建议。