Suppr超能文献

微神经生理学作为一种微创方法,用于评估神经调节过程中的靶组织神经支配。

Microneurography as a minimally invasive method to assess target engagement during neuromodulation.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America.

Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America.

出版信息

J Neural Eng. 2023 Apr 13;20(2). doi: 10.1088/1741-2552/acc35c.

Abstract

Peripheral neural signals recorded during neuromodulation therapies provide insights into local neural target engagement and serve as a sensitive biomarker of physiological effect. Although these applications make peripheral recordings important for furthering neuromodulation therapies, the invasive nature of conventional nerve cuffs and longitudinal intrafascicular electrodes (LIFEs) limit their clinical utility. Furthermore, cuff electrodes typically record clear asynchronous neural activity in small animal models but not in large animal models. Microneurography, a minimally invasive technique, is already used routinely in humans to record asynchronous neural activity in the periphery. However, the relative performance of microneurography microelectrodes compared to cuff and LIFE electrodes in measuring neural signals relevant to neuromodulation therapies is not well understood.To address this gap, we recorded cervical vagus nerve electrically evoked compound action potentials (ECAPs) and spontaneous activity in a human-scaled large animal model-the pig. Additionally, we recorded sensory evoked activity and both invasively and non-invasively evoked CAPs from the great auricular nerve. In aggregate, this study assesses the potential of microneurography electrodes to measure neural activity during neuromodulation therapies with statistically powered and pre-registered outcomes (https://osf.io/y9k6j).The cuff recorded the largest ECAP signal (< 0.01) and had the lowest noise floor amongst the evaluated electrodes. Despite the lower signal to noise ratio, microneurography electrodes were able to detect the threshold for neural activation with similar sensitivity to cuff and LIFE electrodes once a dose-response curve was constructed. Furthermore, the microneurography electrodes recorded distinct sensory evoked neural activity.The results show that microneurography electrodes can measure neural signals relevant to neuromodulation therapies. Microneurography could further neuromodulation therapies by providing a real-time biomarker to guide electrode placement and stimulation parameter selection to optimize local neural fiber engagement and study mechanisms of action.

摘要

在神经调节治疗过程中记录的周围神经信号提供了对局部神经靶标的了解,并作为生理效应的敏感生物标志物。尽管这些应用使周围记录对于推进神经调节治疗变得重要,但传统神经袖带和纵向神经内电极 (LIFE) 的侵入性限制了它们的临床实用性。此外,袖带电极通常在小动物模型中记录清晰的异步神经活动,但在大动物模型中则不行。微创技术微神经记录术已在人类中常规用于记录周围的异步神经活动。然而,微神经记录术微电极与袖带和 LIFE 电极在测量与神经调节治疗相关的神经信号方面的相对性能尚不清楚。为了解决这一差距,我们在人体比例的大型动物模型——猪中记录了电诱发复合动作电位 (ECAP) 和自发性活动的颈迷走神经。此外,我们还记录了耳大神经的感觉诱发活动以及侵入性和非侵入性诱发 CAP。总的来说,这项研究评估了微神经记录术电极在具有统计学功效和预先注册结果的神经调节治疗中测量神经活动的潜力 (https://osf.io/y9k6j)。袖带记录的 ECAP 信号最大(<0.01),并且在评估的电极中噪声底最低。尽管信噪比较低,但一旦构建了剂量反应曲线,微神经记录术电极就能够以与袖带和 LIFE 电极相似的灵敏度检测到神经激活的阈值。此外,微神经记录术电极记录了独特的感觉诱发神经活动。结果表明,微神经记录术电极可以测量与神经调节治疗相关的神经信号。微神经记录术可以通过提供实时生物标志物来指导电极放置和刺激参数选择,从而优化局部神经纤维的参与,并研究作用机制,从而进一步推进神经调节治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d0/10587909/639739b05ebd/nihms-1929701-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验