Suppr超能文献

扭曲双层双层石墨烯中的可调谐自旋极化关联态。

Tunable spin-polarized correlated states in twisted double bilayer graphene.

机构信息

Department of Physics, Harvard University, Cambridge, MA, USA.

National Institute for Material Science, Tsukuba, Japan.

出版信息

Nature. 2020 Jul;583(7815):221-225. doi: 10.1038/s41586-020-2458-7. Epub 2020 Jul 8.

Abstract

Reducing the energy bandwidth of electrons in a lattice below the long-range Coulomb interaction energy promotes correlation effects. Moiré superlattices-which are created by stacking van der Waals heterostructures with a controlled twist angle-enable the engineering of electron band structure. Exotic quantum phases can emerge in an engineered moiré flat band. The recent discovery of correlated insulator states, superconductivity and the quantum anomalous Hall effect in the flat band of magic-angle twisted bilayer graphene has sparked the exploration of correlated electron states in other moiré systems. The electronic properties of van der Waals moiré superlattices can further be tuned by adjusting the interlayer coupling or the band structure of constituent layers. Here, using van der Waals heterostructures of twisted double bilayer graphene (TDBG), we demonstrate a flat electron band that is tunable by perpendicular electric fields in a range of twist angles. Similarly to magic-angle twisted bilayer graphene, TDBG shows energy gaps at the half- and quarter-filled flat bands, indicating the emergence of correlated insulator states. We find that the gaps of these insulator states increase with in-plane magnetic field, suggesting a ferromagnetic order. On doping the half-filled insulator, a sudden drop in resistivity is observed with decreasing temperature. This critical behaviour is confined to a small area in the density-electric-field plane, and is attributed to a phase transition from a normal metal to a spin-polarized correlated state. The discovery of spin-polarized correlated states in electric-field-tunable TDBG provides a new route to engineering interaction-driven quantum phases.

摘要

在晶格中降低电子的能量带宽低于长程库仑相互作用能量会促进相关效应。由范德华异质结构以受控扭转角堆叠而成的莫尔超晶格使电子能带结构的工程设计成为可能。在工程化的莫尔平坦带中会出现奇异的量子相。在魔角扭曲双层石墨烯的平坦带中最近发现的关联绝缘体态、超导性和量子反常霍尔效应激发了对其他莫尔系统中关联电子态的探索。通过调整层间耦合或组成层的能带结构,范德华莫尔超晶格的电子性质可以进一步调节。在这里,我们使用扭曲双层双层石墨烯(TDBG)的范德华异质结构,演示了在一系列扭转角下可通过垂直电场调节的平坦电子能带。与魔角扭曲双层石墨烯类似,TDBG 在半填充和平坦带填充时显示出能隙,表明出现了关联绝缘体态。我们发现这些绝缘体态的能隙随面内磁场增加而增加,表明存在铁磁有序。在半填充绝缘体上掺杂时,随着温度降低,电阻率会突然下降。这种临界行为局限于密度-电场平面中的一个小区域,归因于从正常金属到自旋极化相关态的相变。在电场可调 TDBG 中发现的自旋极化相关态为工程化相互作用驱动的量子相提供了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验