Suppr超能文献

评估用于锚定间接比较的总体调整方法的性能:一项模拟研究。

Assessing the performance of population adjustment methods for anchored indirect comparisons: A simulation study.

作者信息

Phillippo David M, Dias Sofia, Ades A E, Welton Nicky J

机构信息

Bristol Medical School (Population Health Sciences), University of Bristol, Bristol, UK.

Centre for Reviews and Dissemination, University of York, York, UK.

出版信息

Stat Med. 2020 Dec 30;39(30):4885-4911. doi: 10.1002/sim.8759. Epub 2020 Oct 4.

Abstract

Standard network meta-analysis and indirect comparisons combine aggregate data from multiple studies on treatments of interest, assuming that any factors that interact with treatment effects (effect modifiers) are balanced across populations. Population adjustment methods such as multilevel network meta-regression (ML-NMR), matching-adjusted indirect comparison (MAIC), and simulated treatment comparison (STC) relax this assumption using individual patient data from one or more studies, and are becoming increasingly prevalent in health technology appraisals and the applied literature. Motivated by an applied example and two recent reviews of applications, we undertook an extensive simulation study to assess the performance of these methods in a range of scenarios under various failures of assumptions. We investigated the impact of varying sample size, missing effect modifiers, strength of effect modification and validity of the shared effect modifier assumption, validity of extrapolation and varying between-study overlap, and different covariate distributions and correlations. ML-NMR and STC performed similarly, eliminating bias when the requisite assumptions were met. Serious concerns are raised for MAIC, which performed poorly in nearly all simulation scenarios and may even increase bias compared with standard indirect comparisons. All methods incur bias when an effect modifier is missing, highlighting the necessity of careful selection of potential effect modifiers prior to analysis. When all effect modifiers are included, ML-NMR and STC are robust techniques for population adjustment. ML-NMR offers additional advantages over MAIC and STC, including extending to larger treatment networks and producing estimates in any target population, making this an attractive choice in a variety of scenarios.

摘要

标准网络荟萃分析和间接比较整合了来自多项关于感兴趣治疗方法研究的汇总数据,假定与治疗效果相互作用的任何因素(效应修饰因素)在各人群中是均衡的。诸如多水平网络荟萃回归(ML-NMR)、匹配调整间接比较(MAIC)和模拟治疗比较(STC)等人群调整方法利用来自一项或多项研究的个体患者数据放宽了这一假设,并且在卫生技术评估和应用文献中越来越普遍。受一个应用实例和最近两篇应用综述的启发,我们开展了一项广泛的模拟研究,以评估这些方法在一系列假设不成立的情况下的性能。我们研究了样本量变化、效应修饰因素缺失、效应修饰强度、共享效应修饰因素假设的有效性、外推有效性、研究间重叠变化以及不同协变量分布和相关性的影响。ML-NMR和STC表现相似,在满足必要假设时消除了偏差。MAIC引发了严重担忧,它在几乎所有模拟场景中表现不佳,与标准间接比较相比甚至可能增加偏差。当效应修饰因素缺失时,所有方法都会产生偏差,这突出了在分析之前仔细选择潜在效应修饰因素的必要性。当纳入所有效应修饰因素时,ML-NMR和STC是用于人群调整的稳健技术。与MAIC和STC相比,ML-NMR具有额外优势,包括扩展到更大的治疗网络并在任何目标人群中产生估计值,使其在各种场景中成为有吸引力的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c83/8690023/83e247e84643/SIM-39-4885-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验