Suppr超能文献

利用不饱和碳碘化合物制备富碳材料。

Exploiting Unsaturated Carbon-Iodine Compounds for the Preparation of Carbon-Rich Materials.

作者信息

DeCicco Racquel C, Luo Liang, Goroff Nancy S

机构信息

Department of Chemistry , State University of New York , Stony Brook , New York 11794-3400 , United States.

Department of Chemistry and Physics , Wagner College , Staten Island , New York 10301 , United States.

出版信息

Acc Chem Res. 2019 Aug 20;52(8):2080-2089. doi: 10.1021/acs.accounts.9b00247. Epub 2019 Aug 1.

Abstract

Conjugated carbon-rich materials have drawn much academic and industrial attention in recent years, due to their intriguing electronic and optical properties and potential applications including organic photovoltaics, flexible and wearable electronics, and chemical and biological sensors. Unsaturated carbon-iodine compounds, mainly the derivatives of iodoalkenes and iodoalkynes, are a class of molecules in which iodine atoms are directly connected to unsaturated carbons. These compounds provide unique advantages in the pursuit of carbon-rich materials, largely due to the Lewis acidity of iodine atoms and the lability of the carbon-iodine bonds. The Lewis acidity and electrophilicity of iodine in unsaturated carbon-iodine compounds make them excellent donors of halogen bonding, which is an attractive interaction between the electrophilic halogen atoms and Lewis basic species. Halogen bonding has emerged as a reliable building block in crystal engineering and supramolecular architectures. In this Account, we illustrate examples of the controlled assembly of diiodopolyynes within host-guest cocrystals that contain oxalamide or urea hosts with appropriate Lewis basic end groups and diiodobutadiyne or diiodohexatriyne guests. Halogen bonding interactions between the host and guest result in an ordered alignment of the diiodopolyynes that allows for a solid-state topochemical polymerization. We have used this approach to prepare poly(diiododiacetylene), PIDA, and poly(iodoethynyliododiacetylene), PIEDA, two conjugated polymers composed only of carbon and iodine. In addition, the polarity of the carbon-iodine bond gives unsaturated carbon-iodine compounds an electron-rich π-system, permitting electrophilic addition reactions with molecular halogens. The halogenated products of these additions can then serve as precursors to other conjugated carbon-rich systems. The lability of the carbon-iodine bond, together with the polarizability of iodine and the higher electronegativity of sp- and sp-hybridized carbons, open up further possibilities in pursuing novel carbon nanomaterials from unsaturated carbon-iodine compounds. For example, we have developed an iterative method for the synthesis of longer symmetric polyynes from shorter diiodopolyynes, using Stille coupling to the iodine-capped polyynes. The iodination/coupling cycle symmetrically lengthens the polyyne chain by two carbon-carbon triple bonds. This method is particularly helpful for preparing polyynes with an odd number of carbon-carbon triple bonds. In addition, the lability of the carbon-iodine bonds of PIDA leads to facile carbonization by pyrolysis or laser irradiation. More strikingly, diiodoalkenes undergo quantitative elimination of iodine in the presence of Lewis bases. This reaction can be used to eliminate iodine at room temperature from PIDA, in which the carbon-iodine bonds are much more easily broken than in the diiodopolyynes, resulting in graphitic carbon materials.

摘要

近年来,共轭富碳材料因其引人入胜的电子和光学性质以及包括有机光伏、柔性和可穿戴电子设备以及化学和生物传感器在内的潜在应用而备受学术界和工业界关注。不饱和碳 - 碘化合物,主要是碘代烯烃和碘代炔烃的衍生物,是一类碘原子直接连接到不饱和碳上的分子。这些化合物在制备富碳材料方面具有独特优势,这主要归因于碘原子的路易斯酸性和碳 - 碘键的活泼性。不饱和碳 - 碘化合物中碘的路易斯酸性和亲电性使其成为卤键的优秀供体,卤键是亲电卤原子与路易斯碱物种之间的一种有吸引力的相互作用。卤键已成为晶体工程和超分子结构中可靠的构建单元。在本综述中,我们展示了在主客体共晶体中可控组装二碘多炔的实例,这些共晶体包含带有适当路易斯碱端基的草酰胺或尿素主体以及二碘丁二炔或二碘己三炔客体。主体与客体之间的卤键相互作用导致二碘多炔有序排列,从而实现固态拓扑化学聚合。我们已使用这种方法制备了聚(二碘二乙炔)(PIDA)和聚(碘乙炔基碘二乙炔)(PIEDA),这两种共轭聚合物仅由碳和碘组成。此外,碳 - 碘键的极性赋予不饱和碳 - 碘化合物一个富电子的π体系,使其能够与分子卤素发生亲电加成反应。这些加成反应的卤化产物随后可作为其他共轭富碳体系的前体。碳 - 碘键的活泼性,连同碘的极化率以及sp和sp杂化碳的较高电负性,为从不饱和碳 - 碘化合物制备新型碳纳米材料开辟了更多可能性。例如,我们开发了一种迭代方法,通过使用Stille偶联反应将碘封端的多炔与较短的二碘多炔反应,来合成更长的对称多炔。碘化/偶联循环通过两个碳 - 碳三键对称地延长多炔链。这种方法对于制备具有奇数个碳 - 碳三键的多炔特别有帮助。此外,PIDA的碳 - 碘键的活泼性导致其通过热解或激光辐照容易碳化。更引人注目的是,二碘烯烃在路易斯碱存在下会定量消除碘。该反应可用于在室温下从PIDA中消除碘,其中碳 - 碘键比在二碘多炔中更容易断裂,从而得到石墨碳材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验