Suppr超能文献

多变量随机波动模型在神经数据中的应用。

Multivariate stochastic volatility modeling of neural data.

机构信息

University of Pennsylvania, Philadelphia, United States.

出版信息

Elife. 2019 Aug 1;8:e42950. doi: 10.7554/eLife.42950.

Abstract

Because multivariate autoregressive models have failed to adequately account for the complexity of neural signals, researchers have predominantly relied on non-parametric methods when studying the relations between brain and behavior. Using medial temporal lobe (MTL) recordings from 96 neurosurgical patients, we show that time series models with volatility described by a multivariate stochastic latent-variable process and lagged interactions between signals in different brain regions provide new insights into the dynamics of brain function. The implied volatility inferred from our process positively correlates with high-frequency spectral activity, a signal that correlates with neuronal activity. We show that volatility features derived from our model can reliably decode memory states, and that this classifier performs as well as those using spectral features. Using the directional connections between brain regions during complex cognitive process provided by the model, we uncovered perirhinal-hippocampal desynchronization in the MTL regions that is associated with successful memory encoding.

摘要

由于多元自回归模型未能充分解释神经信号的复杂性,研究人员在研究大脑与行为之间的关系时主要依赖于非参数方法。我们使用来自 96 名神经外科患者的内侧颞叶 (MTL) 记录,表明由多元随机潜变量过程描述的时序列模型和不同脑区之间信号的滞后相互作用为大脑功能动力学提供了新的见解。从我们的过程推断出的隐含波动率与高频谱活动呈正相关,而该信号与神经元活动相关。我们表明,从我们的模型中得出的波动率特征可以可靠地解码记忆状态,并且该分类器的性能与使用频谱特征的分类器一样好。使用模型提供的复杂认知过程中大脑区域之间的定向连接,我们发现与成功的记忆编码相关的 MTL 区域中的内嗅-海马去同步化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a69/6697415/dbbd686c07f5/elife-42950-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验