Suppr超能文献

数据驱动的大鼠急性癫痫发生期大脑网络动态模型。

Data-Driven Network Dynamical Model of Rat Brains During Acute Ictogenesis.

机构信息

Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil.

Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João Del-Rei, São João Del Rei, Brazil.

出版信息

Front Neural Circuits. 2022 Aug 10;16:747910. doi: 10.3389/fncir.2022.747910. eCollection 2022.

Abstract

Epilepsy is one of the most common neurological disorders worldwide. Recent findings suggest that the brain is a complex system composed of a network of neurons, and seizure is considered an emergent property resulting from its interactions. Based on this perspective, network physiology has emerged as a promising approach to explore how brain areas coordinate, synchronize and integrate their dynamics, both under perfect health and critical illness conditions. Therefore, the objective of this paper is to present an application of (Dynamic) Bayesian Networks (DBN) to model Local Field Potentials (LFP) data on rats induced to epileptic seizures based on the number of arcs found using threshold analytics. Results showed that DBN analysis captured the dynamic nature of brain connectivity across ictogenesis and a significant correlation with neurobiology derived from pioneering studies employing techniques of pharmacological manipulation, lesion, and modern optogenetics. The arcs evaluated under the proposed approach achieved consistent results based on previous literature, in addition to demonstrating robustness regarding functional connectivity analysis. Moreover, it provided fascinating and novel insights, such as discontinuity between forelimb clonus and generalized tonic-clonic seizure (GTCS) dynamics. Thus, DBN coupled with threshold analytics may be an excellent tool for investigating brain circuitry and their dynamical interplay, both in homeostasis and dysfunction conditions.

摘要

癫痫是全球最常见的神经障碍之一。最近的研究结果表明,大脑是一个由神经元网络组成的复杂系统,而癫痫发作被认为是其相互作用产生的突发属性。基于这一观点,网络生理学已成为一种很有前途的方法,可以探索大脑区域在健康和疾病状态下如何协调、同步和整合其动力学。因此,本文的目的是展示(动态)贝叶斯网络(DBN)在基于阈值分析发现的弧数对大鼠诱导癫痫发作的局部场电位(LFP)数据进行建模的应用。结果表明,DBN 分析捕捉到了脑连接在发作形成过程中的动态性质,并且与神经生物学有显著的相关性,这源自于使用药理学操作、损伤和现代光遗传学技术的开创性研究。根据先前的文献,所提出方法评估的弧获得了一致的结果,并且在功能连接分析方面表现出了稳健性。此外,它还提供了引人入胜的新见解,例如前肢阵挛和全面强直阵挛发作(GTCS)动力学之间的不连续性。因此,DBN 与阈值分析相结合可能是研究大脑回路及其在稳态和功能障碍条件下的动态相互作用的绝佳工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8604/9399918/b175c3bb4de7/fncir-16-747910-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验