Department of Mathematics, North Carolina State University, Raleigh, North Carolina.
Department of Clinical Physiology and Nuclear Medicine, Bispebjerg Frederiksberg Hospital, Frederiksberg, Denmark.
J Appl Physiol (1985). 2019 Nov 1;127(5):1386-1402. doi: 10.1152/japplphysiol.00015.2019. Epub 2019 Aug 1.
The Valsalva maneuver (VM) is a diagnostic protocol examining sympathetic and parasympathetic activity in patients with autonomic dysfunction (AD) impacting cardiovascular control. Because direct measurement of these signals is costly and invasive, AD is typically assessed indirectly by analyzing heart rate and blood pressure response patterns. This study introduces a mathematical model that can predict sympathetic and parasympathetic dynamics. Our model-based analysis includes two control mechanisms: respiratory sinus arrhythmia (RSA) and the baroreceptor reflex (baroreflex). The RSA submodel integrates an electrocardiogram-derived respiratory signal with intrathoracic pressure, and the baroreflex submodel differentiates aortic and carotid baroreceptor regions. Patient-specific afferent and efferent signals are determined for 34 control subjects and 5 AD patients, estimating parameters fitting the model output to heart rate data. Results show that inclusion of RSA and distinguishing aortic/carotid regions are necessary to model the heart rate response to the VM. Comparing control subjects to patients shows that RSA and baroreflex responses are significantly diminished. This study compares estimated parameter values from the model-based predictions to indices used in clinical practice. Three indices are computed to determine adrenergic function from the slope of the systolic blood pressure in phase II [ (a new index)], the baroreceptor sensitivity (), and the Valsalva ratio (). Results show that these indices can distinguish between normal and abnormal states, but model-based analysis is needed to differentiate pathological signals. In summary, the model simulates various VM responses and, by combining indices and model predictions, we study the pathologies for 5 AD patients. We introduce a patient-specific model analyzing heart rate and blood pressure during a Valsalva maneuver (VM). The model predicts autonomic function incorporating the baroreflex and respiratory sinus arrhythmia (RSA) control mechanisms. We introduce a novel index () characterizing sympathetic activity, which can distinguish control and abnormal patients. However, we assert that modeling and parameter estimation are necessary to explain pathologies. Finally, we show that aortic baroreceptors contribute significantly to the VM and RSA affects early VM.
瓦尔萨尔瓦动作(VM)是一种诊断协议,用于检查自主神经功能障碍(AD)患者的交感和副交感活动,这些活动会影响心血管控制。由于这些信号的直接测量既昂贵又具有侵入性,因此 AD 通常通过分析心率和血压反应模式来间接评估。本研究引入了一种可以预测交感和副交感动态的数学模型。我们的基于模型的分析包括两种控制机制:呼吸窦性心律失常(RSA)和压力感受器反射(压力反射)。RSA 子模型将心电图衍生的呼吸信号与胸腔内压力相结合,而压力反射子模型则区分主动脉和颈动脉压力感受器区域。为 34 名对照受试者和 5 名 AD 患者确定了特定于患者的传入和传出信号,估计参数使模型输出与心率数据拟合。结果表明,包含 RSA 和区分主动脉/颈动脉区域对于模拟 VM 对心率的反应是必要的。将对照受试者与患者进行比较表明,RSA 和压力反射的反应明显减弱。本研究将基于模型的预测所估计的参数值与临床实践中使用的指数进行了比较。计算了三个指数来确定从第二期收缩压斜率中得出的肾上腺素能功能(一个新的指数)、压力感受器敏感性()和瓦尔萨尔瓦比值()。结果表明,这些指数可以区分正常和异常状态,但需要基于模型的分析来区分病理性信号。总之,该模型模拟了各种 VM 反应,并通过结合指数和模型预测,研究了 5 名 AD 患者的病理状态。我们提出了一种分析在瓦尔萨尔瓦动作(VM)期间心率和血压的特定于患者的模型。该模型通过包含压力反射和呼吸窦性心律失常(RSA)控制机制来预测自主功能。我们引入了一个新的指数()来描述交感活动,它可以区分对照和异常患者。然而,我们断言建模和参数估计对于解释病理状态是必要的。最后,我们表明主动脉压力感受器对 VM 有重要贡献,而 RSA 会影响早期 VM。