Suppr超能文献

预测食管癌放化疗期间严重淋巴细胞减少症:预处理列线图的建立与验证。

Prediction of Severe Lymphopenia During Chemoradiation Therapy for Esophageal Cancer: Development and Validation of a Pretreatment Nomogram.

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands.

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Pract Radiat Oncol. 2020 Jan-Feb;10(1):e16-e26. doi: 10.1016/j.prro.2019.07.010. Epub 2019 Jul 29.

Abstract

INTRODUCTION

In patients with esophageal cancer, occurrence of severe radiation-induced lymphopenia during chemoradiation therapy has been associated with worse progression-free and overall survival. The aim of this study was to develop and validate a pretreatment clinical nomogram for the prediction of grade 4 lymphopenia.

METHODS AND MATERIALS

A development set of consecutive patients who underwent chemoradiation therapy for esophageal cancer and an independent validation set of patients from another institution were identified. Grade 4 lymphopenia was defined as an absolute lymphocyte count nadir during chemoradiation therapy of <0.2 × 10/μL. Multivariable logistic regression analysis was used to create a prediction model for grade 4 lymphopenia in the development set, which was internally validated using bootstrapping and externally validated by applying the model to the validation set. The model was presented as a nomogram yielding 4 risk groups.

RESULTS

Among 860 included patients, 322 (37%) experienced grade 4 lymphopenia. Higher age, larger planning target volume in interaction with lower body mass index, photon- rather than proton-based therapy, and lower baseline absolute lymphocyte count were predictive in the final model (corrected c-statistic, 0.76). External validation in 144 patients, among whom 58 (40%) had grade 4 lymphopenia, yielded a c-statistic of 0.71. Four nomogram-based risk groups yielded predicted risk rates of 10%, 24%, 43%, and 70%, respectively.

CONCLUSIONS

A pretreatment clinical nomogram was developed and validated for the prediction of grade 4 radiation-induced lymphopenia during chemoradiation therapy for esophageal cancer. The nomogram can risk stratify individual patients suitable for lymphopenia-mitigating strategies or potential future therapeutic approaches to ultimately improve survival.

摘要

简介

在接受放化疗的食管癌患者中,放化疗期间发生严重的放射性淋巴细胞减少与无进展生存期和总生存期更差相关。本研究旨在开发和验证一种预测 4 级淋巴细胞减少的预处理临床列线图。

方法与材料

确定了接受放化疗的食管癌连续患者的开发集和另一家机构的患者的独立验证集。4 级淋巴细胞减少定义为放化疗期间绝对淋巴细胞计数最低点<0.2×10/μL。多变量逻辑回归分析用于创建开发集中 4 级淋巴细胞减少的预测模型,该模型通过自举法进行内部验证,并通过将模型应用于验证集进行外部验证。该模型以生成 4 个风险组的列线图呈现。

结果

在 860 例纳入患者中,322 例(37%)发生 4 级淋巴细胞减少。较高的年龄、较大的计划靶区与较低的体重指数、光子而不是质子治疗以及较低的基线绝对淋巴细胞计数是最终模型中的预测因素(校正 c 统计量,0.76)。在 144 例患者中的外部验证中,其中 58 例(40%)发生 4 级淋巴细胞减少,c 统计量为 0.71。4 个基于列线图的风险组分别预测出 10%、24%、43%和 70%的风险率。

结论

为预测食管癌放化疗期间 4 级放射性淋巴细胞减少,开发并验证了一种预处理临床列线图。该列线图可以对个体患者进行风险分层,适合采用减轻淋巴细胞减少的策略或潜在的未来治疗方法,最终提高生存率。

相似文献

2
Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy.放化疗后淋巴细胞最低点与食管癌生存结局
Int J Radiat Oncol Biol Phys. 2017 Sep 1;99(1):128-135. doi: 10.1016/j.ijrobp.2017.05.037. Epub 2017 Jun 1.
5
Validation of a Nomogram Predicting Survival After Trimodality Therapy for Esophageal Cancer.列线图预测食管癌三联治疗后生存的验证。
Ann Thorac Surg. 2018 Nov;106(5):1541-1547. doi: 10.1016/j.athoracsur.2018.05.055. Epub 2018 Jun 19.

引用本文的文献

4
Lymphocytopenia following adjuvant radiotherapy for breast cancer.乳腺癌辅助放疗后的淋巴细胞减少症。
Precis Radiat Oncol. 2024 Feb 29;8(1):22-29. doi: 10.1002/pro6.1221. eCollection 2024 Mar.

本文引用的文献

6
Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy.放化疗后淋巴细胞最低点与食管癌生存结局
Int J Radiat Oncol Biol Phys. 2017 Sep 1;99(1):128-135. doi: 10.1016/j.ijrobp.2017.05.037. Epub 2017 Jun 1.
10
Does Unintentional Splenic Radiation Predict Outcomes After Pancreatic Cancer Radiation Therapy?无意脾照射能否预测胰腺癌放疗后的结果?
Int J Radiat Oncol Biol Phys. 2017 Feb 1;97(2):323-332. doi: 10.1016/j.ijrobp.2016.10.046. Epub 2016 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验