Suppr超能文献

高速视频显微镜和尿石表面附近气泡动力学的数值模拟。

High-speed video microscopy and numerical modeling of bubble dynamics near a surface of urinary stone.

机构信息

Applaud Medical, Incorporated, 953 Indiana Street, San Francisco, California 94107, USA.

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Acoust Soc Am. 2019 Jul;146(1):516. doi: 10.1121/1.5116693.

Abstract

Ultra-high-speed video microscopy and numerical modeling were used to assess the dynamics of microbubbles at the surface of urinary stones. Lipid-shell microbubbles designed to accumulate on stone surfaces were driven by bursts of ultrasound in the sub-MHz range with pressure amplitudes on the order of 1 MPa. Microbubbles were observed to undergo repeated cycles of expansion and violent collapse. At maximum expansion, the microbubbles' cross-section resembled an ellipse truncated by the stone. Approximating the bubble shape as an oblate spheroid, this study modeled the collapse by solving the multicomponent Euler equations with a two-dimensional-axisymmetric code with adaptive mesh refinement for fine resolution of the gas-liquid interface. Modeled bubble collapse and high-speed video microscopy showed a distinctive circumferential pinching during the collapse. In the numerical model, this pinching was associated with bidirectional microjetting normal to the rigid surface and toroidal collapse of the bubble. Modeled pressure spikes had amplitudes two-to-three orders of magnitude greater than that of the driving wave. Micro-computed tomography was used to study surface erosion and formation of microcracks from the action of microbubbles. This study suggests that engineered microbubbles enable stone-treatment modalities with driving pressures significantly lower than those required without the microbubbles.

摘要

采用超高速视频显微镜和数值建模方法来评估尿石表面微泡的动力学特性。为了在亚兆赫兹范围内积累在结石表面,设计了具有 1 MPa 量级压力幅度的脂质壳微泡,通过微秒级超声脉冲驱动微泡。观察到微泡经历了反复的膨胀和剧烈的坍塌循环。在最大膨胀时,微泡的横截面类似于被结石截断的椭圆形。通过求解带有二维轴对称自适应网格细化的多组分欧拉方程来模拟气泡形状作为扁球体的坍塌,以精细分辨率处理气液界面。模拟的气泡坍塌和高速视频显微镜显示出在坍塌过程中存在明显的周向挤压。在数值模型中,这种挤压与垂直于刚性表面的双向微喷射以及气泡的环形坍塌有关。模拟的压力峰值幅度比驱动波高两个到三个数量级。微计算机断层扫描用于研究微泡作用下表面侵蚀和微裂纹的形成。本研究表明,工程微泡使结石治疗模式的驱动压力明显低于没有微泡时所需的压力。

相似文献

2
A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
Phys Med Biol. 2012 Feb 7;57(3):785-808. doi: 10.1088/0031-9155/57/3/785. Epub 2012 Jan 18.
4
Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
Phys Med Biol. 2015 Oct 21;60(20):7909-25. doi: 10.1088/0031-9155/60/20/7909. Epub 2015 Sep 25.
5
Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
Ultrasonics. 2016 Mar;66:54-64. doi: 10.1016/j.ultras.2015.11.010. Epub 2015 Nov 28.
6
Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
J Acoust Soc Am. 2012 Jun;131(6):4349-57. doi: 10.1121/1.4707479.
9
Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study.
J Acoust Soc Am. 2013 Sep;134(3):1875-85. doi: 10.1121/1.4817843.
10
Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy.
Ultrason Sonochem. 2023 May;95:106393. doi: 10.1016/j.ultsonch.2023.106393. Epub 2023 Mar 31.

引用本文的文献

1
Modifying the cavitation bubble collapse in the erosive regime with a surface bar structure.
Ultrason Sonochem. 2025 Jul 4;120:107439. doi: 10.1016/j.ultsonch.2025.107439.
2
Dynamics of crevice microbubbles that cause the twinkling artifact.
Ultrason Sonochem. 2024 Aug;108:106971. doi: 10.1016/j.ultsonch.2024.106971. Epub 2024 Jun 25.
3
Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements.
Ultrason Sonochem. 2021 Nov;79:105792. doi: 10.1016/j.ultsonch.2021.105792. Epub 2021 Oct 15.
4
Towards an understanding of the chemo-mechanical influences on kidney stone failure via the material point method.
PLoS One. 2020 Dec 11;15(12):e0240133. doi: 10.1371/journal.pone.0240133. eCollection 2020.
5
On the governing fragmentation mechanism of primary intermetallics by induced cavitation.
Ultrason Sonochem. 2021 Jan;70:105260. doi: 10.1016/j.ultsonch.2020.105260. Epub 2020 Jul 24.

本文引用的文献

2
Comment on "Effect of liquid temperature on sonoluminescence".
Phys Rev E. 2018 Feb;97(2-2):027101. doi: 10.1103/PhysRevE.97.027101.
3
Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.
J Acoust Soc Am. 2017 Dec;142(6):3649. doi: 10.1121/1.5017619.
4
Outcomes of the collapse of a large bubble in water at high ambient pressures.
Phys Rev E. 2017 Apr;95(4-1):043101. doi: 10.1103/PhysRevE.95.043101. Epub 2017 Apr 4.
5
Modelling cavitation erosion using fluid-material interaction simulations.
Interface Focus. 2015 Oct 6;5(5):20150016. doi: 10.1098/rsfs.2015.0016.
6
Intense cavitation at extreme static pressure.
Ultrasonics. 2016 Feb;65:380-9. doi: 10.1016/j.ultras.2015.08.007. Epub 2015 Aug 21.
7
Histotripsy methods in mechanical disintegration of tissue: towards clinical applications.
Int J Hyperthermia. 2015 Mar;31(2):145-62. doi: 10.3109/02656736.2015.1007538. Epub 2015 Feb 24.
8
Targeted microbubbles: a novel application for the treatment of kidney stones.
BJU Int. 2015 Jul;116(1):9-16. doi: 10.1111/bju.12996. Epub 2015 Mar 17.
9
Fragmentation of urinary calculi in vitro by burst wave lithotripsy.
J Urol. 2015 Jan;193(1):338-44. doi: 10.1016/j.juro.2014.08.009. Epub 2014 Aug 9.
10
Finite-volume WENO scheme for viscous compressible multicomponent flows.
J Comput Phys. 2014 Oct 1;274:95-121. doi: 10.1016/j.jcp.2014.06.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验