Suppr超能文献

微泡-血管相互作用及诱导应力的机制:数值研究。

Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study.

机构信息

Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, 2075 Bayview Avenue, Room C713, Toronto, Ontario M4N 3M5, Canada.

出版信息

J Acoust Soc Am. 2013 Sep;134(3):1875-85. doi: 10.1121/1.4817843.

Abstract

Oscillating microbubbles within microvessels could induce stresses that lead to bioeffects or vascular damage. Previous work has attributed vascular damage to the vessel expansion or bubble jet. However, ultra-high speed images of recent studies suggest that it could happen due to the vascular invagination. Numerical simulations of confined bubbles could provide insight into understanding the mechanism behind bubble-vessel interactions. In this study, a finite element model of a coupled bubble/fluid/vessel system was developed and validated with experimental data. Also, for a more realistic study viscoelastic properties of microvessels were assessed and incorporated into this comprehensive numerical model. The wall shear stress (WSS) and circumferential stress (CS), metrics of vascular damage, were calculated from these simulations. Resultant amplitudes of oscillation were within 15% of those measured in experiments (four cases). Among the experimental cases, it was numerically found that maximum WSS values were between 1.1-18.3 kPa during bubble expansion and 1.5-74 kPa during bubble collapse. CS was between 0.43-2.2 MPa during expansion and 0.44-6 MPa while invaginated. This finding confirmed that vascular damage could occur during vascular invaginations. Predicted thresholds in which these stresses are higher during vessel invagination were calculated from simulations.

摘要

血管内的振动微泡会产生应力,导致生物效应或血管损伤。先前的研究将血管损伤归因于血管扩张或气泡射流。然而,最近研究的超高速图像表明,这可能是由于血管内陷引起的。受限气泡的数值模拟可以深入了解气泡-血管相互作用的机制。在这项研究中,开发了一个耦合气泡/流体/血管系统的有限元模型,并通过实验数据进行了验证。此外,为了进行更现实的研究,评估了微血管的粘弹性特性,并将其纳入这个综合数值模型中。从这些模拟中计算了血管损伤的度量指标:壁面切应力 (WSS) 和周向应力 (CS)。结果表明,模拟得到的振动幅度与实验测量值(四个案例)相差在 15%以内。在实验案例中,数值模拟发现,在气泡膨胀过程中,最大 WSS 值在 1.1-18.3 kPa 之间,在气泡塌陷过程中,最大 WSS 值在 1.5-74 kPa 之间。在膨胀过程中 CS 值在 0.43-2.2 MPa 之间,在血管内陷过程中 CS 值在 0.44-6 MPa 之间。这一发现证实了血管损伤可能发生在血管内陷过程中。根据模拟计算出了这些在血管内陷过程中更高的应力的预测阈值。

相似文献

引用本文的文献

5
A review on photo-mediated ultrasound therapy.光介导超声治疗的综述。
Exp Biol Med (Maywood). 2023 May;248(9):775-786. doi: 10.1177/15353702231181191. Epub 2023 Jul 15.

本文引用的文献

4
Microbubble sizing and shell characterization using flow cytometry.使用流式细胞术进行微泡粒径和壳层特征分析。
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):955-63. doi: 10.1109/TUFFC.2011.1896.
5
Blood vessel deformations on microsecond time scales by ultrasonic cavitation.超声空化导致血管在微秒时间尺度上发生变形。
Phys Rev Lett. 2011 Jan 21;106(3):034301. doi: 10.1103/PhysRevLett.106.034301. Epub 2011 Jan 18.
6
Blood vessel rupture by cavitation.空化导致血管破裂。
Urol Res. 2010 Aug;38(4):321-6. doi: 10.1007/s00240-010-0302-5. Epub 2010 Aug 2.
8
Transmitted ultrasound pressure variation in micro blood vessel phantoms.微血管模型中传输超声压力变化
Ultrasound Med Biol. 2008 Jun;34(6):1014-20. doi: 10.1016/j.ultrasmedbio.2007.11.021. Epub 2008 Apr 8.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验