Suppr超能文献

体外冲击波碎石术对尿路结石的破碎作用

Fragmentation of urinary calculi in vitro by burst wave lithotripsy.

作者信息

Maxwell Adam D, Cunitz Bryan W, Kreider Wayne, Sapozhnikov Oleg A, Hsi Ryan S, Harper Jonathan D, Bailey Michael R, Sorensen Mathew D

机构信息

Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington.

Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington.

出版信息

J Urol. 2015 Jan;193(1):338-44. doi: 10.1016/j.juro.2014.08.009. Epub 2014 Aug 9.

Abstract

PURPOSE

We developed a new method of lithotripsy that uses short, broadly focused bursts of ultrasound rather than shock waves to fragment stones. We investigated the characteristics of stone comminution by burst wave lithotripsy in vitro.

MATERIALS AND METHODS

Artificial and natural stones (mean ± SD size 8.2 ± 3.0 mm, range 5 to 15) were treated with ultrasound bursts using a focused transducer in a water bath. Stones were exposed to bursts with focal pressure amplitude of 6.5 MPa or less at a 200 Hz burst repetition rate until completely fragmented. Ultrasound frequencies of 170, 285 and 800 kHz were applied using 3 transducers, respectively. Time to fragmentation for each stone type was recorded and fragment size distribution was measured by sieving.

RESULTS

Stones exposed to ultrasound bursts were fragmented at focal pressure amplitudes of 2.8 MPa or greater at 170 kHz. Fractures appeared along the stone surface, resulting in fragments that separated at the surface nearest to the transducer until the stone was disintegrated. All natural and artificial stones were fragmented at the highest focal pressure of 6.5 MPa with a mean treatment duration of 36 seconds for uric acid stones to 14.7 minutes for cystine stones. At a frequency of 170 kHz the largest artificial stone fragments were less than 4 mm. Exposure at 285 and 800 kHz produced only fragments less than 2 mm and less than 1 mm, respectively.

CONCLUSIONS

Stone comminution with burst wave lithotripsy is feasible as a potential noninvasive treatment method for nephrolithiasis. Adjusting the fundamental ultrasound frequency allows for stone fragment size to be controlled.

摘要

目的

我们开发了一种新的碎石方法,该方法使用短的、宽聚焦的超声脉冲而不是冲击波来破碎结石。我们在体外研究了脉冲波碎石术粉碎结石的特性。

材料与方法

在水浴中使用聚焦换能器对人工结石和天然结石(平均±标准差尺寸为8.2±3.0毫米,范围为5至15毫米)进行超声脉冲处理。结石在200赫兹的脉冲重复频率下暴露于聚焦压力幅度为6.5兆帕或更低的脉冲中,直到完全破碎。分别使用3个换能器施加170、285和800千赫的超声频率。记录每种结石类型的破碎时间,并通过筛分测量碎片尺寸分布。

结果

在170千赫时,暴露于超声脉冲的结石在聚焦压力幅度为2.8兆帕或更高时破碎。裂缝沿结石表面出现,导致碎片在最靠近换能器的表面分离,直到结石解体。所有天然和人工结石在6.5兆帕的最高聚焦压力下破碎,尿酸结石的平均治疗持续时间为36秒,胱氨酸结石为14.7分钟。在170千赫的频率下,最大的人工结石碎片小于4毫米。在285千赫和800千赫暴露分别产生小于2毫米和小于1毫米的碎片。

结论

脉冲波碎石术粉碎结石作为一种潜在的肾结石非侵入性治疗方法是可行的。调整基本超声频率可控制结石碎片大小。

相似文献

1
Fragmentation of urinary calculi in vitro by burst wave lithotripsy.
J Urol. 2015 Jan;193(1):338-44. doi: 10.1016/j.juro.2014.08.009. Epub 2014 Aug 9.
2
Evaluation of Urinary Stone Comminution with a Clinical Burst Wave Lithotripsy System.
J Endourol. 2020 Nov;34(11):1167-1173. doi: 10.1089/end.2019.0873. Epub 2020 Mar 20.
3
Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.
J Endourol. 2018 Apr;32(4):344-349. doi: 10.1089/end.2017.0675. Epub 2018 Mar 20.
4
Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model.
J Endourol. 2019 Oct;33(10):787-792. doi: 10.1089/end.2018.0886. Epub 2019 May 27.
6
Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):301-9. doi: 10.1109/TUFFC.2013.2566.
7
An investigation of elastic waves producing stone fracture in burst wave lithotripsy.
J Acoust Soc Am. 2020 Mar;147(3):1607. doi: 10.1121/10.0000847.
10
Stone fragility: its therapeutic implications in shock wave lithotripsy of upper urinary tract stones.
Int Urol Nephrol. 2003;35(3):387-92. doi: 10.1023/b:urol.0000022939.61851.22.

引用本文的文献

1
Burst wave lithotripsy - a paradigm shift: inferences from a scoping review.
World J Urol. 2025 Apr 25;43(1):250. doi: 10.1007/s00345-025-05645-x.
2
Fracture and Fragmentation of Vascular Calcifications by Focused Ultrasound.
J Cardiovasc Transl Res. 2025 Apr 21. doi: 10.1007/s12265-025-10611-4.
3
Facilitated Clearance of Small, Asymptomatic Renal Stones With Burst Wave Lithotripsy and Ultrasonic Propulsion.
J Urol. 2025 Jul;214(1):41-47. doi: 10.1097/JU.0000000000004533. Epub 2025 Mar 17.
4
Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases.
Ultrason Sonochem. 2025 Mar;114:107270. doi: 10.1016/j.ultsonch.2025.107270. Epub 2025 Feb 12.
5
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
6
Revealing physical interactions of ultrasound waves with the body through photoelasticity imaging.
Opt Lasers Eng. 2024 Oct;181. doi: 10.1016/j.optlaseng.2024.108361. Epub 2024 Jun 14.
7
Biomechanical Modelling of Porcine Kidney.
Bioengineering (Basel). 2024 May 24;11(6):537. doi: 10.3390/bioengineering11060537.

本文引用的文献

1
Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor.
BJU Int. 2012 Nov;110(9):1376-85. doi: 10.1111/j.1464-410X.2012.11160.x. Epub 2012 Apr 23.
2
Shock wave technology and application: an update.
Eur Urol. 2011 May;59(5):784-96. doi: 10.1016/j.eururo.2011.02.033. Epub 2011 Feb 23.
3
Histotripsy erosion of model urinary calculi.
J Endourol. 2011 Feb;25(2):341-4. doi: 10.1089/end.2010.0407. Epub 2010 Nov 22.
4
Contemporary surgical management of upper urinary tract calculi.
J Urol. 2009 May;181(5):2152-6. doi: 10.1016/j.juro.2009.01.023. Epub 2009 Mar 17.
6
Potential for cavitation-mediated tissue damage in shockwave lithotripsy.
J Endourol. 2008 Jan;22(1):121-6. doi: 10.1089/end.2007.9852.
7
Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
BJU Int. 2008 Feb;101(3):382-8. doi: 10.1111/j.1464-410X.2007.07231.x. Epub 2007 Oct 8.
8
A mechanistic analysis of stone fracture in lithotripsy.
J Acoust Soc Am. 2007 Feb;121(2):1190-202. doi: 10.1121/1.2404894.
9
Cloud cavitation control for lithotripsy using high intensity focused ultrasound.
Ultrasound Med Biol. 2006 Sep;32(9):1383-97. doi: 10.1016/j.ultrasmedbio.2006.05.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验