Suppr超能文献

微泡在充满粘性流体的微血管中振荡:一项有限元建模研究。

Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.

作者信息

Chen Chuyi, Gu Yuyang, Tu Juan, Guo Xiasheng, Zhang Dong

机构信息

Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.

Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.

出版信息

Ultrasonics. 2016 Mar;66:54-64. doi: 10.1016/j.ultras.2015.11.010. Epub 2015 Nov 28.

Abstract

Understanding the dynamics of coated-microbubble oscillating in an elastic microvessel is important for effective and safe applications of ultrasound contrast agents (UCAs) in imaging and therapy. Numerical simulations are performed based on a two-dimensional (2D) asymmetric finite element model to investigate the influences of both acoustic driving parameters (e.g., pressure and frequency) and material properties (vessel size, microbubble shell visco-elastic parameters and fluid viscosity) on the dynamic interactions in the bubble-blood-vessel system. The results show that, the constrained effect of the blood vessel along the radial direction will induce the asymmetric bubble oscillation and vessel deformation, as well as shifting the bubble resonance frequency toward the higher frequency range. For a bubble (1.5-μm radius) activated by 1-MHz ultrasound pulses in a microvessel with a radius varying between 2 and 6.5 μm, up to 26.95 kPa shear stress could be generated on the vessel wall at a driving pressure of 0.2 MPa, which should be high enough to damage the vascular endothelial cells. The asymmetrical oscillation ratio of the bubble can be aggravated from 0.12% to 79.94% with the increasing acoustic driving pressure and blood viscosity, or the decreasing vessel size and microbubble shell visco-elastic properties. The maximum compression velocity on the bubble shell will be enhanced from 0.19 to 22.79 m/s by the increasing vessel size and acoustic pressure, or the decreasing microbubble shell visco-elasticity and blood viscosity. As the results, the peak values of microstreaming-induced shear stress on the vessel wall increases from 0.003 to 26.95 kPa and the deformation degree of vessel is raised from 1.01 to 1.49, due to the enhanced acoustic amplitude, or the decreasing vessel size, blood viscosity and microbubble shell visco-elasticity. Moreover, it also suggests that, among above impact parameters, microbubble resonance frequency and UCA shell elasticity might play more dominant roles in dynamic interactions of the bubble-blood-vessel system.

摘要

了解包被微泡在弹性微血管中振荡的动力学特性对于超声造影剂(UCA)在成像和治疗中的有效和安全应用至关重要。基于二维(2D)非对称有限元模型进行了数值模拟,以研究声学驱动参数(如压力和频率)和材料特性(血管大小、微泡壳粘弹性参数和流体粘度)对气泡-血液-血管系统中动态相互作用的影响。结果表明,血管沿径向的约束作用会导致气泡的不对称振荡和血管变形,并使气泡共振频率向更高频率范围偏移。对于半径在2至6.5μm之间变化的微血管中由1-MHz超声脉冲激活的气泡(半径为1.5μm),在0.2MPa的驱动压力下,血管壁上可产生高达26.95kPa的剪切应力,这足以损伤血管内皮细胞。随着声学驱动压力和血液粘度的增加,或血管大小和微泡壳粘弹性特性的降低,气泡的不对称振荡比率可从0.12%加剧到79.94%。随着血管大小和声压的增加,或微泡壳粘弹性和血液粘度的降低,气泡壳上的最大压缩速度将从0.19提高到22.79m/s。结果,由于声幅增强,或血管大小、血液粘度和微泡壳粘弹性降低,血管壁上微流诱导的剪切应力峰值从0.003kPa增加到26.95kPa,血管的变形程度从1.01提高到1.49。此外,这也表明,在上述影响参数中,微泡共振频率和UCA壳弹性在气泡-血液-血管系统的动态相互作用中可能起更主导的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验