Dietler Julia, Stabel Robert, Möglich Andreas
Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany.
Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany; Research Center for Bio-Macromolecules, Universität Bayreuth, Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany.
Methods Enzymol. 2019;624:227-248. doi: 10.1016/bs.mie.2019.04.005. Epub 2019 Apr 26.
Living organisms exhibit a wide range of intrinsic adaptive responses to incident light. Likewise, in optogenetics, biological systems are tailored to initiate predetermined cellular processes upon light exposure. As genetically encoded, light-gated actuators, sensory photoreceptors are at the heart of these responses in both the natural and engineered scenarios. Upon light absorption, photoreceptors enter a series of generally rapid photochemical reactions leading to population of the light-adapted signaling state of the receptor. Notably, this state persists for a while before thermally reverting to the original dark-adapted resting state. As a corollary, the inactivation of photosensitive biological circuits upon light withdrawal can exhibit substantial inertia. Intermittent illumination of suitable pulse frequency can hence maintain the photoreceptor in its light-adapted state while greatly reducing overall light dose, thereby mitigating adverse side effects. Moreover, several photoreceptor systems may be actuated sequentially with a single light color if they sufficiently differ in their inactivation kinetics. Here, we detail the construction of programmable illumination devices for the rapid and parallelized testing of biological responses to diverse lighting regimes. As the technology is based on open electronics and readily available, inexpensive components, it can be adopted by most laboratories at moderate expenditure. As we exemplify for two use cases, the programmable devices enable the facile interrogation of diverse illumination paradigms and their application in optogenetics and photobiology.
生物体对入射光表现出广泛的内在适应性反应。同样,在光遗传学中,生物系统经过定制,在光照时启动预定的细胞过程。作为基因编码的光门控致动器,感光光感受器在自然和工程场景中的这些反应中都处于核心地位。在吸收光后,光感受器会进入一系列通常很快的光化学反应,导致受体进入光适应信号状态。值得注意的是,这种状态会持续一段时间,然后才热回复到原来的暗适应静止状态。因此,撤光时光敏生物回路的失活可能会表现出显著的惯性。以合适的脉冲频率进行间歇照明,因此可以使光感受器保持在光适应状态,同时大大降低总光剂量,从而减轻不良副作用。此外,如果几个光感受器系统的失活动力学有足够差异,就可以用单一颜色的光依次驱动它们。在这里,我们详细介绍了用于快速并行测试生物对不同光照模式反应的可编程照明设备的构建。由于该技术基于开放电子学且使用现成的廉价组件,大多数实验室只需适度花费就能采用。正如我们通过两个用例所举例说明的那样,可编程设备能够方便地探究各种照明模式及其在光遗传学和光生物学中的应用。