Lehrstuhl für Biochemie, Universität Bayreuth, D-95447 Bayreuth, Germany.
Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany.
Biol Chem. 2019 Feb 25;400(3):429-441. doi: 10.1515/hsz-2018-0375.
Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3', 5'-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.
环核苷酸单磷酸(cNMP)作为信号转导中的通用第二信使,存在于原核生物和真核生物中。由于信号转导通常依赖于第二信使浓度瞬时升高形成的微区,因此精确干扰 cNMP 的时空动力学的方法对于探究潜在的生理过程具有独特的优势。光遗传学似乎特别适合,因为它可以提供时间和空间上依赖于光的、对各种细胞过程的精确控制。几种感光受体作为光激活的腺苷酸环化酶(PAC)发挥作用,因此可以作为光调控的执行器,用于控制细胞内 3',5'-环腺苷酸单磷酸的水平。为了表征 PAC 并优化其特性,我们设计了一个易于分析这些光受体的测试平台。通过表达荧光报告蛋白在细菌细胞中监测环化酶活性,可编程照明允许快速探索多种照明模式。因此,我们研究了分别对蓝光和红光有响应的两种 PAC,并观察到两者都有显著的暗活性。接下来,我们对红光敏感的 PAC 进行了工程改造,使其对光的响应发生改变,其中一个变体,称为 DdPAC,表现出对光的增强响应。这些 PAC 变体丰富了光遗传学工具包,从而有助于对 cNMP 代谢和信号转导进行详细分析。