Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037.
Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16933-16942. doi: 10.1073/pnas.1903059116. Epub 2019 Aug 1.
Cancer genomes are characterized by focal increases in DNA methylation, co-occurring with widespread hypomethylation. Here, we show that TET loss of function results in a similar genomic footprint. Both 5hmC in wild-type (WT) genomes and DNA hypermethylation in -deficient genomes are largely confined to the active euchromatic compartment, consistent with the known functions of TET proteins in DNA demethylation and the known distribution of 5hmC at transcribed genes and active enhancers. In contrast, an unexpected DNA hypomethylation noted in multiple -deficient genomes is primarily observed in the heterochromatin compartment. In a mouse model of T cell lymphoma driven by TET deficiency ( T cells), genomic analysis of malignant T cells revealed DNA hypomethylation in the heterochromatic genomic compartment, as well as reactivation of repeat elements and enrichment for single-nucleotide alterations, primarily in heterochromatic regions of the genome. Moreover, hematopoietic stem/precursor cells (HSPCs) doubly deficient for and displayed greater losses of DNA methylation than HSPCs singly deficient for or alone, potentially explaining the unexpected synergy between and mutations in myeloid and lymphoid malignancies. -deficient cells showed decreased localization of DNMT3A in the heterochromatin compartment compared with WT cells, pointing to a functional interaction between TET and DNMT proteins and providing a potential explanation for the hypomethylation observed in -deficient genomes. Our data suggest that TET loss of function may at least partially underlie the characteristic pattern of global hypomethylation coupled to regional hypermethylation observed in diverse cancer genomes, and highlight the potential contribution of heterochromatin hypomethylation to oncogenesis.
癌症基因组的特征是 DNA 甲基化的局灶性增加,同时伴有广泛的低甲基化。在这里,我们表明 TET 功能丧失会导致类似的基因组特征。野生型(WT)基因组中的 5hmC 和 -缺陷基因组中的 DNA 高甲基化主要局限于活性常染色质区室,这与 TET 蛋白在 DNA 去甲基化中的已知功能以及 5hmC 在转录基因和活性增强子处的已知分布一致。相比之下,在多个 -缺陷基因组中观察到的出乎意料的 DNA 低甲基化主要发生在异染色质区室。在由 TET 缺陷驱动的 T 细胞淋巴瘤的小鼠模型中(T 细胞),对恶性 T 细胞的基因组分析显示,异染色质基因组区室中的 DNA 低甲基化,以及重复元件的重新激活和单核苷酸改变的富集,主要发生在基因组的异染色质区室。此外,同时缺乏 和 的造血干细胞/前体细胞(HSPCs)比单独缺乏 或 之一的 HSPCs 表现出更大的 DNA 甲基化丢失,这可能解释了髓系和淋巴恶性肿瘤中 和 突变之间出乎意料的协同作用。与 WT 细胞相比,-缺陷细胞在异染色质区室中 DNMT3A 的定位减少,这表明 TET 和 DNMT 蛋白之间存在功能相互作用,并为在 -缺陷基因组中观察到的低甲基化提供了潜在解释。我们的数据表明,TET 功能丧失至少部分是导致不同癌症基因组中观察到的全局低甲基化与局部高甲基化特征模式的原因之一,并强调了异染色质低甲基化对肿瘤发生的潜在贡献。