S. G. Cone, E. P. Lambeth, M. B. Fisher, Department of Biomedical Engineering, North Carolina State University and the University of North Carolina - Chapel Hill, Raleigh, NC, USA S. G. Cone, J. A. Piedrahita, M. B. Fisher, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA H. Ru, Department of Computational Biology and Bioinformatics, North Carolina State University, Raleigh, NC, USA L. A. Fordham, Department of Radiology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA J. A. Piedrahita, Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA J. T. Spang, M. B. Fisher, Department of Orthopaedics, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA.
Clin Orthop Relat Res. 2019 Sep;477(9):2161-2174. doi: 10.1097/CORR.0000000000000884..
ACL injuries are becoming increasingly common in children and adolescents, but little is known regarding age-specific ACL function in these patients. To improve our understanding of changes in musculoskeletal tissues during growth and given the limited availability of pediatric human cadaveric specimens, tissue structure and function can be assessed in large animal models, such as the pig.
QUESTIONS/PURPOSES: Using cadaveric porcine specimens ranging throughout skeletal growth, we aimed to assess age-dependent changes in (1) joint kinematics under applied AP loads and varus-valgus moments, (2) biomechanical function of the ACL under the same loads, (3) the relative biomechanical function of the anteromedial and posterolateral bundles of the ACL; and (4) size and orientation of the anteromedial and posterolateral bundles.
Stifle joints (analogous to the human knee) were collected from female Yorkshire crossbreed pigs at five ages ranging from early youth to late adolescence (1.5, 3, 4.5, 6, and 18 months; n = 6 pigs per age group, 30 total), and MRIs were performed. A robotic testing system was used to determine joint kinematics (AP tibial translation and varus-valgus rotation) and in situ forces in the ACL and its bundles in response to applied anterior tibial loads and varus-valgus moments. To see if morphological changes to the ACL compared with biomechanical changes, ACL and bundle cross-sectional area, length, and orientation were calculated from MR images.
Joint kinematics decreased with increasing age. Normalized AP tibial translation decreased by 44% from 1.5 months (0.34 ± 0.08) to 18 months (0.19 ± 0.02) at 60° of flexion (p < 0.001) and varus-valgus rotation decreased from 25° ± 2° at 1.5 months to 6° ± 2° at 18 months (p < 0.001). The ACL provided the majority of the resistance to anterior tibial loading at all age groups (75% to 111% of the applied anterior force; p = 0.630 between ages). Anteromedial and posterolateral bundle function in response to anterior loading and varus torque were similar in pigs of young ages. During adolescence (4.5 to 18 months), the in situ force carried by the anteromedial bundle increased relative to that carried by the posterolateral bundle, shifting from 59% ± 22% at 4.5 months to 92% ± 12% at 18 months (data for 60° of flexion, p < 0.001 between 4.5 and 18 months). The cross-sectional area of the anteromedial bundle increased by 30 mm throughout growth from 1.5 months (5 ± 2 mm) through 18 months (35 ± 8 mm; p < 0.001 between 1.5 and 18 months), while the cross-sectional area of the posterolateral bundle increased by 12 mm from 1.5 months (7 ± 2 mm) to 4.5 months (19 ± 5 mm; p = 0.004 between 1.5 and 4.5 months), with no further growth (17 ± 7 mm at 18 months; p = 0.999 between 4.5 and 18 months). However, changes in length and orientation were similar between the bundles.
We showed that the stifle joint (knee equivalent) in the pig has greater translational and rotational laxity in early youth (1.5 to 3 months) compared with adolescence (4.5 to 18 months), that the ACL functions as a primary stabilizer throughout growth, and that the relative biomechanical function and size of the anteromedial and posterolateral bundles change differently with growth.
Given the large effects observed here, the age- and bundle-specific function, size, and orientation of the ACL may need to be considered regarding surgical timing, graft selection, and graft placement. In addition, the findings of this study will be used to motivate pre-clinical studies on the impact of partial and complete ACL injuries during skeletal growth.
ACL 损伤在儿童和青少年中越来越常见,但对于这些患者 ACL 的特定年龄的功能知之甚少。为了提高我们对生长过程中肌肉骨骼组织变化的理解,并且鉴于小儿人体尸体标本的有限可用性,可以在大型动物模型(如猪)中评估组织结构和功能。
问题/目的:使用整个骨骼生长范围的尸体猪标本,我们旨在评估(1)在施加 AP 负载和内翻 - 外翻力矩下关节运动学的年龄依赖性变化,(2)在相同负载下 ACL 的生物力学功能,(3)ACL 的前内侧和后外侧束的相对生物力学功能;以及(4)前内侧和后外侧束的大小和方向。
从五个年龄组(1.5、3、4.5、6 和 18 个月)的雌性约克夏杂种猪中收集膝关节(类似于人类膝关节),并进行 MRI 检查。使用机器人测试系统确定关节运动学(AP 胫骨平移和内翻 - 外翻旋转)以及 ACL 及其束在施加前胫骨负荷和内翻 - 外翻力矩时的原位力。为了了解 ACL 的形态变化与生物力学变化相比,从 MRI 图像中计算 ACL 和束的横截面积、长度和方向。
关节运动学随着年龄的增长而降低。在 60°的屈曲下,从 1.5 个月(0.34 ± 0.08)到 18 个月(0.19 ± 0.02),AP 胫骨平移的归一化值降低了 44%(p < 0.001),并且内翻 - 外翻旋转从 1.5 个月的 25°±2°降低到 18 个月的 6°±2°(p < 0.001)。在所有年龄段,ACL 提供了大部分对抗前胫骨加载的阻力(应用前力的 75%至 111%;年龄之间的 p = 0.630)。在年轻的猪中,前内侧和后外侧束在响应前负荷和内翻扭矩的功能相似。在青春期(4.5 至 18 个月)期间,前内侧束的原位力相对于后外侧束增加,从 4.5 个月的 59%±22%增加到 18 个月的 92%±12%(60°屈曲时的数据,p < 0.001 在 4.5 和 18 个月之间)。前内侧束的横截面积从 1.5 个月(5 ± 2 毫米)到 18 个月(35 ± 8 毫米)在整个生长过程中增加了 30 毫米(p < 0.001 在 1.5 和 18 个月之间),而后外侧束的横截面积从 1.5 个月(7 ± 2 毫米)增加到 4.5 个月(19 ± 5 毫米;p = 0.004 在 1.5 和 4.5 个月之间),此后不再增加(18 个月时为 17 ± 7 毫米;p = 0.999 在 4.5 和 18 个月之间)。然而,束之间的长度和方向变化相似。
我们表明,猪的膝关节(膝关节等效物)在青少年(4.5 至 18 个月)期间比早期青年(1.5 至 3 个月)具有更大的平移和旋转松弛度,ACL 在整个生长过程中作为主要稳定器发挥作用,并且前内侧和后外侧束的相对生物力学功能和大小随着生长而发生不同的变化。
鉴于这里观察到的大影响,ACL 的年龄和束特异性功能、大小和方向可能需要考虑手术时机、移植物选择和移植物放置。此外,本研究的结果将用于激发骨骼生长过程中部分和完全 ACL 损伤的临床前研究。