Department of Trauma, Hand and Reconstructive Surgery, University of Muenster, Muenster, Germany.
Faculty of Engineering Physics, FH Muenster, Muenster, Germany.
Am J Sports Med. 2023 Sep;51(11):2928-2935. doi: 10.1177/03635465231187043. Epub 2023 Jul 28.
There is limited knowledge about how the anterior cruciate ligament (ACL) and capsuloligamentous structures on the medial side of the knee act to control anteromedial rotatory knee instability.
To investigate the contribution of the medial retinaculum, capsular structures (anteromedial capsule, deep medial collateral ligament [MCL], and posterior oblique ligament), and different fiber regions of the superficial MCL to restraining knee laxity, including anteromedial rotatory instability.
Controlled laboratory study.
Eight fresh-frozen human cadaveric knees were tested using a 6 degrees of freedom robotic testing system in a position-controlled mode. Loads of 10 N·m valgus rotation, 5 N·m tibial external rotation, 5 N·m tibial internal rotation, and 134 N anterior tibial translation in 5 N·m external rotation were applied at different flexion angles. The motion of the intact knee at 0° to 120° of flexion was replicated after sequential excision of the sartorial fascia; anteromedial retinaculum; anteromedial capsule; anterior, middle, and posterior fibers of the superficial MCL; the deep MCL; the posterior oblique ligament; and the ACL. The reduction in force/torque indicated the contribution of each resected structure to resisting laxity. A repeated-measures analysis of variance with a post hoc Bonferroni test was used to analyze the relative force and torque changes from the intact state.
The superficial MCL was the most important restraint to valgus rotation from 0° to 120° and provided the largest contribution to resisting external rotation between 30° and 120° of knee flexion, gradually increasing from 25.2% ± 7.4% at 30° to 36.9% ± 15.4% at 90°. The posterior oblique ligament contributed significantly to resisting valgus rotation only in extension (17.2% ± 12.1%) but was the major restraint to internal rotation at 0° (46.7% ± 13.1%) and 30° (30.4% ± 17.7%) of flexion. The sartorial fascia and anteromedial retinaculum resisted ER at all knee flexion angles ( < .05) and was the single most important restraint in the extended knee (19.5% ± 11%). The capsular structures (anteromedial capsule and deep MCL) had a combined contribution of 20% ± 11.5% at 0° and 23.4% ± 10.5% at 120° of knee flexion but were less important from 30° to 90°. The ACL was the primary restraint to anterior tibial translation in external rotation between 0° and 60° of flexion (50.2% ± 16.9% at 30°), but the superficial MCL was more important at 90° to 120° of knee flexion (36.8% ± 16.4% at 90°). The anterior, middle, and posterior regions of the superficial MCL contributed differently to the simulated laxity tests. The anterior fibers were the most important part of the superficial MCL in resisting external rotation and combined anterior tibial translation in external rotation.
The superficial MCL not only was the primary restraint to valgus rotation throughout the range of knee flexion but also importantly contributed to resisting anterior tibial translation in external rotation, particularly in deeper flexion in the cadaveric model. The anterior fibers of the superficial MCL are the most important superficial MCL fibers in resisting anterior tibial translation in external rotation. This study suggests that a medial reconstruction that reproduces the function of the posterior MCL fibers and posterior oblique ligament may not best control anteromedial rotatory instability.
Based on these data, there is a need for an individualized medial reconstruction to address different types of medial injury patterns and instabilities.
对于前交叉韧带(ACL)和膝关节内侧的囊韧带结构如何控制前内侧旋转性膝关节不稳定,人们的了解有限。
研究内侧支持带、囊状结构(前内侧囊、深层内侧副韧带[MCL]和后斜韧带)以及浅层 MCL 的不同纤维区域对限制膝关节松弛度的贡献,包括前内侧旋转性不稳定。
对照实验室研究。
在位置控制模式下,使用 6 自由度机器人测试系统对 8 个新鲜冷冻的人尸体膝关节进行测试。在不同的屈曲角度下施加 10 N·m 的外翻旋转、5 N·m 的胫骨外旋、5 N·m 的胫骨内旋和 134 N 的前向胫骨平移外加 5 N·m 的外旋。0°至 120°屈曲时,完整膝关节的运动在依次切除股旁筋膜、前内侧支持带、前内侧囊、浅层 MCL 的前、中、后纤维、深层 MCL、后斜韧带和 ACL 后得到复制。力/扭矩的减少表明每个切除结构对抵抗松弛的贡献。使用重复测量方差分析和事后 Bonferroni 检验分析从完整状态的相对力和扭矩变化。
浅层 MCL 是从 0°至 120°时对抗外翻旋转最重要的限制因素,并且在 30°至 120°的膝关节屈曲时,对抵抗外旋的贡献最大,从 30°时的 25.2%±7.4%逐渐增加到 90°时的 36.9%±15.4%。后斜韧带仅在伸展时对对抗外翻旋转有显著贡献(17.2%±12.1%),但在 0°和 30°时是内旋的主要限制因素(分别为 46.7%±13.1%和 30.4%±17.7%)。股旁筋膜和前内侧支持带在所有膝关节屈曲角度下抵抗 ER(<0.05),在伸展膝关节时是最重要的单一限制因素(19.5%±11%)。囊状结构(前内侧囊和深层 MCL)在 0°时有 20%±11.5%的共同贡献,在 120°时有 23.4%±10.5%的共同贡献,但从 30°到 90°时则不那么重要。ACL 是 0°至 60°外旋时前向胫骨平移的主要限制因素(30°时为 50.2%±16.9%),但在 90°至 120°的膝关节屈曲时,浅层 MCL 更为重要(90°时为 36.8%±16.4%)。浅层 MCL 的前、中、后区域对模拟松弛测试的贡献不同。前纤维是浅层 MCL 抵抗外旋和外旋联合前向胫骨平移的最重要部分。
浅层 MCL 不仅是整个膝关节屈曲范围内对抗外翻旋转的主要限制因素,而且在尸体模型的更深屈曲中对抵抗外旋中的前向胫骨平移也很重要。浅层 MCL 的前纤维是抵抗外旋中前向胫骨平移最重要的浅层 MCL 纤维。本研究表明,内侧重建如果要复制后 MCL 纤维和后斜韧带的功能,可能无法最好地控制前内侧旋转性不稳定。
基于这些数据,需要进行个体化的内侧重建,以解决不同类型的内侧损伤模式和不稳定问题。