Suppr超能文献

定量结构-活性关系研究:在大型数据库中预测 Ames 致突变性。

Towards quantitative read across: Prediction of Ames mutagenicity in a large database.

机构信息

Alpha-Pretox, Via Giovanni Pascoli 1, 00184, Rome, Italy.

出版信息

Regul Toxicol Pharmacol. 2019 Nov;108:104434. doi: 10.1016/j.yrtph.2019.104434. Epub 2019 Jul 30.

Abstract

In silico chemical safety assessment can support the evaluation of hazard and risk following potential exposure to a substance, thus stimulating an increased interest for the use of Structure-Activity based approaches by regulatory authorities, particularly QSAR and Read Across. Whereas the longer history of QSAR led to recognize the crucial requirements for predictivity, there are still challenges faced by adopting Read Across to a larger extent in a regulatory setting, namely standardization and objective criteria. In previous research, suitable conditions for applying Read Across to the prediction of the Ames mutagenicity of metabolites and degradation products of pesticides were established: a standardized similarity criterion based simultaneously on basic molecular properties and Structural Similarity was successfully applied to a number of case studies. Here the investigation is extended to a large database of curated Ames mutagenicity results. For around 2,000 chemicals for which the similarity criterion was applicable, the predictivity of Read Across was high: specificity 0.72, sensitivity 0.90, accuracy 0.85. This compares favourably with the Ames test intra-assay variability, and with the predictivity of QSAR models. The need for standardization and rigorous validation of Read Across is emphasized.

摘要

计算机化学安全性评估可支持对潜在暴露于物质后的危害和风险进行评估,从而提高了监管机构对使用基于结构-活性的方法(特别是定量构效关系和读通)的兴趣。虽然定量构效关系的历史更长,使其认识到了预测性的关键要求,但在监管环境中更广泛地采用读通仍面临着标准化和客观标准的挑战。在之前的研究中,已经确定了适用于将读通应用于预测农药代谢物和降解产物的致突变性的条件:同时基于基本分子特性和结构相似性的标准化相似性标准已成功应用于许多案例研究。在这里,研究范围扩大到一个经过精心整理的大量致突变性结果数据库。对于大约 2000 种可应用相似性标准的化学品,读通的预测性很高:特异性为 0.72,敏感性为 0.90,准确性为 0.85。这与 Ames 试验内试验变异性以及定量构效关系模型的预测性相比具有优势。强调了对读通进行标准化和严格验证的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验