Liu Xitao, Wang Sasa, Long Peiqing, Li Lina, Peng Yu, Xu Zhiyun, Han Shiguo, Sun Zhihua, Hong Maochun, Luo Junhua
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2019 Oct 7;58(41):14504-14508. doi: 10.1002/anie.201907660. Epub 2019 Sep 4.
Self-powered photodetection driven by ferroelectric polarization has shown great potential in next-generation optoelectronic devices. Hybrid perovskite ferroelectrics that combine polarization and semiconducting properties have a promising position within this portfolio. Herein, we demonstrate the realization of self-powered photodetection in a new developed biaxial ferroelectric, (EA) (MA) Pb Br (1, EA is ethylammonium and MA is methylammonium), which displays high Curie temperature (375 K), superior spontaneous polarization (3.7 μC cm ), and unique semiconducting nature. Strikingly, without an external energy supply, 1 exhibits an direction-selectable photocurrent with fascinating attributes including high photocurrent density (≈4.1 μA cm ), high on/off switching ratio (over 10 ), and ultrafast response time (96/123 μs); such merits are superior to those of the most active ferroelectric oxide BiFeO . Further studies reveal that strong inversion symmetry breaking in 1 provides a desirable driving force for carrier separation, accounting for such electrically tunable self-powered photoactive behaviors. This work sheds light on exploring new multifunctional hybrid perovskites and advancing the design of intelligent photoelectric devices.
由铁电极化驱动的自供电光电探测在下一代光电器件中显示出巨大潜力。结合了极化和半导体特性的混合钙钛矿铁电体在这一领域具有广阔前景。在此,我们展示了在一种新开发的双轴铁电体(EA)(MA)PbBr(1,EA为乙铵,MA为甲铵)中实现自供电光电探测,该铁电体具有高居里温度(375 K)、优异的自发极化(3.7 μC cm )以及独特的半导体性质。引人注目的是,在没有外部能量供应的情况下,1表现出方向可选择的光电流,具有迷人的特性,包括高光电流密度(≈4.1 μA cm )、高开关比(超过10 )和超快响应时间(96/123 μs);这些优点优于最具活性的铁电氧化物BiFeO 。进一步的研究表明,1中强烈的反演对称性破缺为载流子分离提供了理想的驱动力,这解释了这种电可调的自供电光活性行为。这项工作为探索新型多功能混合钙钛矿以及推进智能光电器件的设计提供了思路。