International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan.
International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan.
Biochem Biophys Res Commun. 2019 Sep 24;517(3):520-524. doi: 10.1016/j.bbrc.2019.07.082. Epub 2019 Jul 31.
Simultaneous imaging and manipulation of a genetically defined neuronal population can provide a causal link between its activity and function. Here, we designed a miniaturized microscope (or 'miniscope') that allows fluorescence imaging and optogenetic manipulation at the cellular level in freely behaving animals. This miniscope has an integrated optical connector that accepts any combination of external light sources, allowing flexibility in the choice of sensors and manipulators. Moreover, due to its simple structure and use of open source software, the miniscope is easy to build and modify. Using this miniscope, we demonstrate the optogenetic silencing of hippocampal CA1 neurons using two laser light sources-one stimulating a calcium sensor (i.e., jGCaAMP7c) and the other serving as an optogenetic silencer (i.e., Jaws). This new miniscope can contribute to efforts to determine causal relationships between neuronal network dynamics and animal behavior.
同时对一个基因定义的神经元群体进行成像和操作可以提供其活动和功能之间的因果关系。在这里,我们设计了一种微型显微镜(或“微镜”),可以在自由活动的动物中进行细胞水平的荧光成像和光遗传学操作。这种微镜有一个集成的光学连接器,可以接受任何组合的外部光源,因此在传感器和操作器的选择上具有灵活性。此外,由于其结构简单,使用开源软件,因此微镜易于构建和修改。使用这种微镜,我们使用两个激光光源演示了海马 CA1 神经元的光遗传学沉默,一个刺激钙传感器(即 jGCaAMP7c),另一个作为光遗传学抑制剂(即 Jaws)。这种新型微镜有助于确定神经元网络动力学和动物行为之间的因果关系。