Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
Departments of Surgery and Neurosciences, University of California San Diego, La Jolla, CA, USA.
Purinergic Signal. 2019 Sep;15(3):343-355. doi: 10.1007/s11302-019-09648-3. Epub 2019 Aug 3.
A major component of slowly reversible hearing loss which develops with sustained exposure to noise has been attributed to release of ATP in the cochlea activating P2X receptor (P2XR) type ATP-gated ion channels. This purinergic humoral adaptation is thought to enable the highly sensitive hearing organ to maintain function with loud sound, protecting the ear from acoustic overstimulation. In the study that established this hearing adaptation mechanism as reported by Housley et al. (Proc Natl Acad Sci U S A 110:7494-7499, 2013), the activation kinetics were determined in mice from auditory brainstem response (ABR) threshold shifts with sustained noise presentation at time points beyond 10 min. The present study was designed to achieve finer resolution of the onset kinetics of purinergic hearing adaptation, and included the use of cubic (2f-f) distortion product otoacoustic emissions (DPOAEs) to probe whether the active mechanical outer hair cell 'cochlear amplifier' contributed to this process. We show that the ABR and DPOAE threshold shifts were largely complete within the first 7.5 min of moderate broadband noise (85 dB SPL) in wildtype C57Bl/6J mice. The ABR and DPOAE adaptation rates were both best fitted by a single exponential function with ~ 3 min time constants. ABR and DPOAE threshold shifts with this noise were minimal in mice null for the P2rx2 gene encoding the P2XR. The findings demonstrate a considerably faster purinergic hearing adaptation to noise than previously appreciated. Moreover, they strongly implicate the outer hair cell as the site of action, as the DPOAEs stem from active cochlear electromotility.
在持续暴露于噪声中会逐渐产生的可恢复性听力损失的主要原因之一,是由于 ATP 在耳蜗中的释放,激活了 P2X 受体 (P2XR) 型 ATP 门控离子通道。这种嘌呤能体液适应被认为使高度敏感的听觉器官能够在大声下维持功能,保护耳朵免受声刺激过度。在 Housley 等人报告的建立这种听力适应机制的研究中(Proc Natl Acad Sci U S A 110:7494-7499, 2013),在超过 10 分钟的时间点,通过持续噪声刺激的听觉脑干反应 (ABR) 阈值变化来确定激活动力学。本研究旨在更精细地解析嘌呤能听力适应的起始动力学,包括使用三次(2f-f)失真产物耳声发射 (DPOAE) 来探究主动机械外毛细胞“耳蜗放大器”是否对此过程有贡献。我们发现,在野生型 C57Bl/6J 小鼠中,中等宽带噪声(85 dB SPL)的前 7.5 分钟内,ABR 和 DPOAE 阈值变化基本完成。ABR 和 DPOAE 的适应率均由单个指数函数拟合最佳,时间常数约为 3 分钟。在编码 P2XR 的 P2rx2 基因缺失的小鼠中,ABR 和 DPOAE 阈值变化与这种噪声的相关性最小。这些发现表明,与之前的认识相比,嘌呤能对噪声的听力适应速度要快得多。此外,它们强烈暗示了外毛细胞是作用部位,因为 DPOAE 源于活跃的耳蜗电动势。