Pearson Lily J, Pinyon Jeremy L, Cederholm Jennie M E, von Jonquieres Georg, Bartlett Florence, Vázquez-Campos Xabier, Delerue Fabien, Ittner Lars M, Housley Gary D
Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, UNSW, Sydney, NSW, Australia.
Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.
Sci Rep. 2025 Mar 25;15(1):10281. doi: 10.1038/s41598-025-94011-3.
Molecular profiling of inner ear neurons has broadened the classification of the primary afferents that support neural coding for hearing and balance. To extend spatiotemporal characterization of auditory and vestibular neuron diversity, we established a transgenic reporter mouse model (Prph-mCherry), where elements of the peripherin promoter (Prph) drive expression of the mCherry fluorescent reporter. Type III intermediate filament protein peripherin expression is a marker for type II spiral ganglion neurons (SGN) that innervate the cochlear outer hair cells, and the small diameter 'bouton' vestibular ganglion neurons (VGN) innervating the type II vestibular hair cells. Using Nanopore genome sequencing, the integration site of the transgene construct was identified within the class III metabotropic glutamate receptor 8 gene (Grm8, chromosome 6). Use of CUBIC / PEGASOS clearing of early postnatal to adult inner ear tissues enabled in situ 3D spatial localization of a dispersed population of cochlear mCherry + ve SGN, with highest expression and density in the hook (high frequency encoding) basal region. Of these mCherry + ve SGN, type II SGN (peripherin-immunopositive) were all co-labeled in the basal region, but the majority of the overall mCherry-delineated SGN auditory subpopulation were type I SGN innervating inner hair cells. In the VGN, mCherry + ve neurons represented ~ 15% of the adult population, dispersed as a small diameter subpopulation throughout both the inferior and superior VGN regions. These findings resolve heterogeneous type I and type II cochlear SGN subpopulations, particularly in the structurally complex hook region, and further differentiate vestibular primary afferents across postnatal development.
内耳神经元的分子图谱研究拓宽了对支持听觉和平衡神经编码的初级传入神经的分类。为了扩展对听觉和前庭神经元多样性的时空特征描述,我们建立了一种转基因报告小鼠模型(Prph-mCherry),其中外周蛋白启动子(Prph)的元件驱动mCherry荧光报告基因的表达。III型中间丝蛋白外周蛋白的表达是支配耳蜗外毛细胞的II型螺旋神经节神经元(SGN)以及支配II型前庭毛细胞的小直径“终扣”前庭神经节神经元(VGN)的标志物。使用纳米孔基因组测序,在III类代谢型谷氨酸受体8基因(Grm8,第6号染色体)内鉴定出转基因构建体的整合位点。对出生后早期到成年期的内耳组织使用CUBIC / PEGASOS清除技术,能够对耳蜗mCherry +阳性SGN的分散群体进行原位3D空间定位,在钩状(高频编码)基部区域表达和密度最高。在这些mCherry +阳性SGN中,II型SGN(外周蛋白免疫阳性)在基部区域均被共同标记,但总体上由mCherry描绘的SGN听觉亚群中的大多数是支配内毛细胞的I型SGN。在VGN中,mCherry +阳性神经元占成年群体的约15%,作为小直径亚群分散分布在VGN的下部和上部区域。这些发现解析了I型和II型耳蜗SGN亚群的异质性,特别是在结构复杂的钩状区域,并进一步区分了出生后发育过程中的前庭初级传入神经。