Hazarika Abhijit, Fedin Igor, Hong Liang, Guo Jinglong, Srivastava Vishwas, Cho Wooje, Coropceanu Igor, Portner Joshua, Diroll Benjamin T, Philbin John P, Rabani Eran, Klie Robert, Talapin Dmitri V
Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States.
Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.
J Am Chem Soc. 2019 Aug 28;141(34):13487-13496. doi: 10.1021/jacs.9b04866. Epub 2019 Aug 19.
In contrast to molecular systems, which are defined with atomic precision, nanomaterials generally show some heterogeneity in size, shape, and composition. The sample inhomogeneity translates into a distribution of energy levels, band gaps, work functions, and other characteristics, which detrimentally affect practically every property of functional nanomaterials. We discuss a novel synthetic strategy, colloidal atomic layer deposition (c-ALD) with stationary reactant phases, which largely circumvents the limitations of traditional colloidal syntheses of nano-heterostructures with atomic precision. This approach allows for significant reduction of inhomogeneity in nanomaterials in complex nanostructures without compromising their structural perfection and enables the synthesis of epitaxial nano-heterostructures of unprecedented complexity. The improved synthetic control ultimately enables bandgap and strain engineering in colloidal nanomaterials with close to atomic accuracy. To demonstrate the power of the new c-ALD method, we synthesize a library of complex II-VI semiconductor nanoplatelet heterostructures. By combining spectroscopic and computational studies, we elucidate the subtle interplay between quantum confinement and strain effects on the optical properties of semiconductor nanostructures.
与具有原子精度定义的分子系统不同,纳米材料通常在尺寸、形状和组成上表现出一定的异质性。样品的不均匀性转化为能级、带隙、功函数和其他特性的分布,这对功能性纳米材料的几乎每一个性能都产生不利影响。我们讨论了一种新颖的合成策略,即具有固定反应物相的胶体原子层沉积(c-ALD),它在很大程度上规避了传统胶体合成具有原子精度的纳米异质结构的局限性。这种方法能够在不损害其结构完美性的情况下,显著降低复杂纳米结构中纳米材料的不均匀性,并能够合成出前所未有的复杂外延纳米异质结构。改进后的合成控制最终实现了胶体纳米材料中接近原子精度的带隙和应变工程。为了展示新的c-ALD方法的威力,我们合成了一系列复杂的II-VI族半导体纳米片异质结构。通过结合光谱和计算研究,我们阐明了量子限制和应变效应在半导体纳米结构光学性质上的微妙相互作用。