Suppr超能文献

AlphaFlow:使用强化学习指导的自驱流控实验室,自主发现和优化多步化学。

AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA.

Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA.

出版信息

Nat Commun. 2023 Mar 14;14(1):1403. doi: 10.1038/s41467-023-37139-y.

Abstract

Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. In this work, we present AlphaFlow, a self-driven fluidic lab capable of autonomous discovery of complex multi-step chemistries. AlphaFlow uses reinforcement learning integrated with a modular microdroplet reactor capable of performing reaction steps with variable sequence, phase separation, washing, and continuous in-situ spectral monitoring. To demonstrate the power of reinforcement learning toward high dimensionality multi-step chemistries, we use AlphaFlow to discover and optimize synthetic routes for shell-growth of core-shell semiconductor nanoparticles, inspired by colloidal atomic layer deposition (cALD). Without prior knowledge of conventional cALD parameters, AlphaFlow successfully identified and optimized a novel multi-step reaction route, with up to 40 parameters, that outperformed conventional sequences. Through this work, we demonstrate the capabilities of closed-loop, reinforcement learning-guided systems in exploring and solving challenges in multi-step nanoparticle syntheses, while relying solely on in-house generated data from a miniaturized microfluidic platform. Further application of AlphaFlow in multi-step chemistries beyond cALD can lead to accelerated fundamental knowledge generation as well as synthetic route discoveries and optimization.

摘要

闭环、自主实验能够在无需用户干预的情况下加速和提高材料效率,探索大型反应空间。然而,对于具有复杂多步工艺和数据稀疏环境的先进材料的自主探索仍然是一个挑战。在这项工作中,我们提出了 AlphaFlow,这是一种能够自主发现复杂多步化学的自驱动流体实验室。AlphaFlow 使用强化学习与模块化微滴反应器集成,能够执行具有可变序列、相分离、洗涤和连续原位光谱监测的反应步骤。为了展示强化学习在高维多步化学中的强大功能,我们使用 AlphaFlow 发现和优化了核壳半导体纳米粒子壳生长的合成路线,这是受到胶体原子层沉积(cALD)的启发。在没有传统 cALD 参数的先验知识的情况下,AlphaFlow 成功地确定并优化了一种新颖的多步反应途径,其中有多达 40 个参数,其性能优于传统序列。通过这项工作,我们展示了闭环、强化学习引导系统在探索和解决多步纳米粒子合成中的挑战的能力,同时仅依赖于从小型化微流控平台生成的内部数据。AlphaFlow 在超越 cALD 的多步化学中的进一步应用可以加速基础知识的产生以及合成路线的发现和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db77/10015005/f6148a3b6826/41467_2023_37139_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验