Suppr超能文献

通过主动高效编码实现主动双目视觉和运动视觉的自主发展。

Autonomous Development of Active Binocular and Motion Vision Through Active Efficient Coding.

作者信息

Lelais Alexander, Mahn Jonas, Narayan Vikram, Zhang Chong, Shi Bertram E, Triesch Jochen

机构信息

Frankfurt Institute for Advanced Studies, Frankfurt, Germany.

Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong.

出版信息

Front Neurorobot. 2019 Jul 16;13:49. doi: 10.3389/fnbot.2019.00049. eCollection 2019.

Abstract

We present a model for the autonomous and simultaneous learning of active binocular and motion vision. The model is based on the Active Efficient Coding (AEC) framework, a recent generalization of classic efficient coding theories to active perception. The model learns how to efficiently encode the incoming visual signals generated by an object moving in 3-D through sparse coding. Simultaneously, it learns how to produce eye movements that further improve the efficiency of the sensory coding. This learning is driven by an intrinsic motivation to maximize the system's coding efficiency. We test our approach on the humanoid robot iCub using simulations. The model demonstrates self-calibration of accurate object fixation and tracking of moving objects. Our results show that the model keeps improving until it hits physical constraints such as camera or motor resolution, or limits on its internal coding capacity. Furthermore, we show that the emerging sensory tuning properties are in line with results on disparity, motion, and motion-in-depth tuning in the visual cortex of mammals. The model suggests that vergence and tracking eye movements can be viewed as fundamentally having the same objective of maximizing the coding efficiency of the visual system and that they can be learned and calibrated jointly through AEC.

摘要

我们提出了一种用于自主同时学习主动双目视觉和运动视觉的模型。该模型基于主动高效编码(AEC)框架,这是经典高效编码理论对主动感知的最新推广。该模型通过稀疏编码学习如何有效地编码由三维空间中移动的物体产生的传入视觉信号。同时,它学习如何产生眼球运动,以进一步提高感官编码的效率。这种学习由最大化系统编码效率的内在动机驱动。我们使用模拟在人形机器人iCub上测试了我们的方法。该模型展示了精确物体注视的自校准和对移动物体的跟踪。我们的结果表明,该模型会持续改进,直到达到物理限制,如相机或电机分辨率,或其内部编码能力的限制。此外,我们表明,新兴的感官调谐特性与哺乳动物视觉皮层中视差、运动和深度运动调谐的结果一致。该模型表明,辐辏和跟踪眼球运动从根本上可以被视为具有相同的目标,即最大化视觉系统的编码效率,并且它们可以通过AEC联合学习和校准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/528b/6646586/03d1fe34359d/fnbot-13-00049-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验