Fischer Ronald, Karl Johannes A
School of Psychology and Center for Applied Cross-Cultural Psychology, Victoria, Wellington, New Zealand.
Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil.
Front Psychol. 2019 Jul 18;10:1507. doi: 10.3389/fpsyg.2019.01507. eCollection 2019.
Psychology has become less WEIRD in recent years, marking progress toward becoming a truly global psychology. However, this increase in cultural diversity is not matched by greater attention to cultural biases in research. A significant challenge in culture-comparative research in psychology is that any comparisons are open to possible item bias and non-invariance. Unfortunately, many psychologists are not aware of problems and their implications, and do not know how to best test for invariance in their data. We provide a general introduction to invariance testing and a tutorial of three major classes of techniques that can be easily implemented in the free software and statistical language R. Specifically, we describe (1) confirmatory and multi-group confirmatory factor analysis, with extension to exploratory structural equation modeling, and multi-group alignment; (2) iterative hybrid logistic regression as well as (3) exploratory factor analysis and principal component analysis with Procrustes rotation. We pay specific attention to effect size measures of item biases and differential item function. Code in R is provided in the main text and online (see https://osf.io/agr5e/), and more extended code and a general introduction to R are available in the Supplementary Materials.
近年来,心理学研究中的“怪异”(WEIRD)现象有所减少,这标志着心理学朝着成为一门真正的全球心理学迈进了一步。然而,文化多样性的增加并没有伴随着对研究中文化偏见的更多关注。心理学文化比较研究中的一个重大挑战是,任何比较都可能存在项目偏差和非不变性。不幸的是,许多心理学家没有意识到这些问题及其影响,也不知道如何最好地检验数据中的不变性。我们提供了不变性检验的一般介绍,并对三类主要技术进行了教程讲解,这些技术可以在免费软件和统计语言R中轻松实现。具体来说,我们描述了:(1)验证性和多组验证性因素分析,并扩展到探索性结构方程建模和多组对齐;(2)迭代混合逻辑回归,以及(3)带有普罗克汝斯忒斯旋转的探索性因素分析和主成分分析。我们特别关注项目偏差和差异项目功能的效应量测量。正文中和在线提供了R代码(见https://osf.io/agr5e/),补充材料中提供了更详细的代码和R的一般介绍。