Vieira Jorge, Rocha Sara, Vázquez Noé, López-Fernández Hugo, Fdez-Riverola Florentino, Reboiro-Jato Miguel, Vieira Cristina P
Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Front Plant Sci. 2019 Jul 4;10:879. doi: 10.3389/fpls.2019.00879. eCollection 2019.
Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the -locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded -pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self -pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In there are 17 genes per -haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine -pollen and -pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two genomes, suggest that diversification of s predate the two genera separation. Here we first identify putative genes from nine and 10 genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the -locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 -haplotypes with more than 11 genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.
非自体配子体自交不亲和(GSI)识别系统的特征是在S-位点存在多个串联排列的F-box基因,这些基因调节花粉特异性。这种生殖障碍存在于茄科、车前科和苹果亚科(蔷薇科)中,但仅在功能试验中进行过研究,以深入了解这种识别机制是如何工作的。在这个系统中,每个编码的S-花粉蛋白(在茄科和车前科中称为SLF,在苹果亚科中称为SFBB)识别并与一组非自体S-雌蕊蛋白(称为S-RNase)相互作用,介导它们的泛素化和降解。在S-单倍型中每个S-位点有17个S-基因,这使得通过实验确定每个SLF的特异性变得不可能。此外,不太可能大规模进行结构域交换实验来确定S-花粉和S-雌蕊的特异性。矮牵牛SLF和来自两个S-基因组的SLF的系统发育分析表明,S-基因的多样化早于这两个属的分离。在这里,我们首先从9个茄科和10个苹果亚科基因组中鉴定推定的S-基因,以确定这三个属中存在多少基因谱系,以及新S-基因谱系的起源速率。每个属使用多个基因组排除了S-位点基因组不完整性的影响。这三个属中相似数量的基因谱系意味着这些物种具有可比的有效种群大小和特异性数量。新特异性的起源速率是每1000万年一个。此外,在这里我们使用10个具有超过11个S-基因的S-单倍型,确定了正选择下的氨基酸位置,这些位置参与SLF特异性识别。这16个氨基酸位置解释了文献中描述的自交不亲和(SI)行为的差异。当根据SI行为对SLF和S-RNase蛋白进行划分,并根据疏水性、电荷、极性和大小对正选择的氨基酸进行分类时,我们确定了SI组之间的固定差异。根据这两种蛋白质的三维结构,这些氨基酸位置相互作用。因此,这种方法可用于推断SLF/S-RNase特异性识别。