Amos Robert A, Mohnen Debra
Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
Front Plant Sci. 2019 Jul 16;10:915. doi: 10.3389/fpls.2019.00915. eCollection 2019.
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems , and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
植物的生命周期和发育需要细胞壁基质多糖的生物合成、沉积和降解。多种细胞壁基质多糖的结构影响着植物细胞的一些具有商业重要性的特性,包括生长、生物质难降解性、器官脱落以及果实的货架期。本综述全面总结了在异源GT蛋白表达后通过检测已得到验证的基质多糖糖基转移酶(GT)活性。植物细胞壁(PCW)生物合成GT主要是定位于植物分泌系统内质网和高尔基体的整合跨膜蛋白。这些酶在植物组织中的丰度较低,使得从天然植物膜中大量纯化它们以获得足以进行酶学表征的量变得尤为困难,而酶学表征对于研究不同GT的功能至关重要。主要细胞壁基质聚糖(包括果胶、木聚糖、木葡聚糖、甘露聚糖、混合连接葡聚糖(MLG)以及AGP蛋白聚糖的阿拉伯半乳聚糖成分)合成过程中的众多活性已被定位到特定基因和多基因家族。细胞壁GT包括那些合成聚合物主链的、那些用延长的糖基链延长侧链的以及那些在多糖主链和/或侧链上添加单个单糖连接的。已采用三种主要策略来鉴定编码合成细胞壁连接的GT的基因:分析富含细胞壁生物合成活性的膜组分、研究细胞壁组成表型的突变遗传学方法以及从已测序植物基因组中通过组学导向鉴定推定的GT。在此,我们比较了用于产生、纯化和研究PCW GT酶活性的异源表达系统,重点是真核系统以及人胚肾(HEK293)细胞。我们讨论了GT的酶学性质,包括动力学速率、多糖产物的链长、受体寡糖偏好、长链聚合物合成的延长机制以及GT复合物的形成。还提出了基质多糖生物合成研究的未来方向。