College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
J Mater Chem B. 2018 Dec 21;6(47):7842-7853. doi: 10.1039/C8TB01464G. Epub 2018 Nov 12.
Compared to conventional carrier-assistant drug delivery systems (DDSs), drug self-delivery systems (DSDSs) have advantages of unprecedented drug loading capacity, minimized carrier-related toxicity and ease of preparation. However, the colloidal stability and blood circulation time of DSDSs still need to be improved. Here we report on the development of a novel biomimicry drug self-delivery system by the integration of a top-down cell membrane complexing technique into our self-delivery multifunctional nano-platform made from bottom-up approach that contains 100% active pharmaceutical ingredients (API) of Pheophorbide A and Irinotecan conjugates (named PI). Compared to conventional cell membrane coated nanoparticles with polymer framework as core and relatively low drug loading, this system consisting of red blood cell membrane vesicles complexed PI (RBC-PI) is polymer-free with up to 50% API loading. RBC-PI exhibited 10 times higher area under curve in pharmacokinetic study and much lower macrophage uptake compared with the parent PI nanoparticles. RBC-PI retained the excellent chemophototherapeutic effects of the PI nanoparticles, but possessed superior anti-cancer efficacy with prolonged blood circulation, improved tumor delivery, and enhanced photothermal effects in animal models. This system represents a novel example of using cell membrane complexing technique for effective surface modification of DSDSs. This is also an innovative study to form a polymer-free cell membrane nanoparticle complexing with positive surface charged materials. This biomimicry DSDS takes advantages of the best features from both systems to make up for each other's shortcomings and posed all the critical features for an ideal drug delivery system.
与传统的载体辅助药物递送系统 (DDS) 相比,药物自递送系统 (DSDS) 具有前所未有的载药能力、最小化载体相关毒性和易于制备的优势。然而,DSDS 的胶体稳定性和血液循环时间仍需要改进。在这里,我们通过将自上而下的细胞膜复合技术整合到我们自递多功能纳米平台中,报道了一种新型的仿生药物自递系统的开发,该平台由自下而上的方法制成,包含了 100%的活性药物成分 (API) 原卟啉 A 和伊立替康缀合物(命名为 PI)。与传统的聚合物框架为核心且载药率相对较低的细胞膜包被纳米粒相比,由红细胞膜囊泡复合 PI (RBC-PI) 组成的系统无聚合物,载药率高达 50%。与母体 PI 纳米粒相比,RBC-PI 在药代动力学研究中具有高达 10 倍的曲线下面积,并且巨噬细胞摄取率低得多。RBC-PI 保留了 PI 纳米粒的优异光化疗效果,但具有更长的血液循环、改善的肿瘤递送和增强的光热效应,在动物模型中表现出更好的抗癌疗效。该系统代表了一种使用细胞膜复合技术有效修饰 DSDS 的新型范例。这也是一项创新性研究,用于形成与带正电荷的材料复合的无聚合物细胞膜纳米颗粒。这种仿生 DSDS 利用了两个系统的最佳特征来弥补彼此的缺点,并具有理想药物递送系统的所有关键特征。