Wei Ren, Breite Daniel, Song Chen, Gräsing Daniel, Ploss Tina, Hille Patrick, Schwerdtfeger Ruth, Matysik Jörg, Schulze Agnes, Zimmermann Wolfgang
Department of Microbiology and Bioprocess Technology Institute of Biochemistry Leipzig University Johannisallee 23 D-04103 Leipzig Germany.
Leibniz Institute of Surface Engineering (IOM) Permoserstrasse 15 D-04318 Leipzig Germany.
Adv Sci (Weinh). 2019 May 20;6(14):1900491. doi: 10.1002/advs.201900491. eCollection 2019 Jul 17.
Polyethylene terephthalate (PET) is the most important mass-produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from have emerged as promising biocatalysts for an eco-friendly PET recycling process. In this study, postconsumer PET food packaging containers are treated with TfCut2 and show weight losses of more than 50% after 96 h of incubation at 70 °C. Differential scanning calorimetry analysis indicates that the high linear degradation rates observed in the first 72 h of incubation is due to the high hydrolysis susceptibility of the mobile amorphous fraction (MAF) of PET. The physical aging process of PET occurring at 70 °C is shown to gradually convert MAF to polymer microstructures with limited accessibility to enzymatic hydrolysis. Analysis of the chain-length distribution of degraded PET by nuclear magnetic resonance spectroscopy reveals that MAF is rapidly hydrolyzed via a combinatorial exo- and endo-type degradation mechanism whereas the remaining PET microstructures are slowly degraded only by endo-type chain scission causing no detectable weight loss. Hence, efficient thermostable biocatalysts are required to overcome the competitive physical aging process for the complete degradation of postconsumer PET materials close to the glass transition temperature of PET.
聚对苯二甲酸乙二酯(PET)是用作包装材料的最重要的大规模生产的热塑性聚酯。最近,诸如来自[具体来源未给出]的TfCut2等嗜热聚酯水解酶已成为用于环保PET回收过程的有前景的生物催化剂。在本研究中,用TfCut2处理消费后的PET食品包装容器,在70°C孵育96小时后显示出超过50%的重量损失。差示扫描量热法分析表明,在孵育的前72小时观察到的高线性降解速率是由于PET的可移动无定形部分(MAF)的高水解敏感性。在70°C发生的PET物理老化过程表明,MAF逐渐转变为酶水解可及性有限的聚合物微结构。通过核磁共振光谱分析降解的PET的链长分布表明,MAF通过组合的外切和内切型降解机制快速水解,而其余的PET微结构仅通过内切型链断裂缓慢降解,未导致可检测的重量损失。因此,需要高效的热稳定生物催化剂来克服竞争性的物理老化过程,以在接近PET玻璃化转变温度的条件下完全降解消费后的PET材料。